Series 56,700 (1-056-7XX) Die Cast Aluminum (1-056-7XS) Stainless Steel Mounting Face: NEMA 56C, 143TC and 145TC

4.5" AK, 5.88" AJ Static Torque: 1.5 through 25 lb-ft

Enclosure Material: IP 23, 54 & 55 Die Cast Aluminum; IP 56 Stainless Steel

Release Type: Knob, Maintained with automatic reset

Enclosure Protection: IP 23 & 54 (formerly referred to by Stearns as NEMA Type 2 & 4 respectively).

IP 55 & 56 (formerly referred to by Stearns as NEMA Type 4X BISSC Certified & Type 4X stainless steel enclosure, respectively).

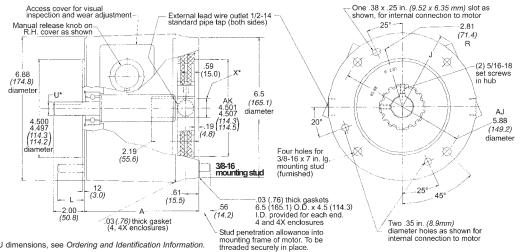
- ABS Type Approval Certified
- Spring-Set Electrically Released
- Adjustable Torque
- · Manual Release Knob, Maintained with Automatic Reset
- Manual Wear Adjustment

· Maximum Speed:

5000 rpm Horizontal 3600 rpm Vertical

Note: 56,700 Series mounts between C-Face motor and reducer. Do not apply overhung load to brake output shaft.

Installation and Service: P/N 8-078-905-67


Parts List: P/N 8-078-906-07

Modifications: Pages 51-60

Universal Mounting: Through 15 lb-ft. 20 and 25 lb-ft. supplied with springs for vertical modification.

Brake set and release times in milliseconds, when brake and motor are switched separately (for T1/T2 definitions, see page 98)

Static Torque lb-ft	Coil Size	T1	T2
1½ - 25	4, K4, K4+, M4+	25	14

* For X and U dimensions, see Ordering and Identification Information. Dimensions for estimating only. For installation purposes request certified prints.

Dimensions /Unit Pricing (Discount Symbol E3)

Dimensions /Unit Pricing (Discount Symbol E3)

N

Nominal Static	Enclosure	Type	Basic Mode			nensions ches <i>(m</i>		Wt.
Torque (Ib-ft) (Nm)	Linciosure	Type	and List	Price	A	J	L	(kg)
	IP 23	AC DC	1-056-701-0X 1-056-705-0X	\$480.00 \$780.00	4.91 (124.7)	3.81 <i>(</i> 96. <i>8</i>)	1.53 (38.9)	12 (5.4)
1.5 (2)	IP 54	AC DC	1-056-702-0X 1-056-706-0X	\$615.00 \$915.00	4.94 (125.5)	3.88 (98.6)	1.53 <i>(</i> 38.9)	13 <i>(5.9)</i>
	IP 55	AC DC	1-056-704-0X 1-056-708-0X	\$690.00 \$990.00	4.94 (125.5)	3.88 (98.6)	1.53 (38.9)	13 <i>(5.9)</i>
	IP 23	AC DC	1-056-711-0X 1-056-715-0X	\$500.00 \$800.00	4.91 (124.7)	3.81 <i>(</i> 96. <i>8)</i>	1.53 (38.9)	12 <i>(5.4)</i>
3	IP 54	AC DC	1-056-712-0X 1-056-716-0X	\$635.00 \$935.00	4.94 (125.5)	3.88 (98.6)	1.53 <i>(38.9)</i>	13 <i>(</i> 5.9)
(4)	IP 55	AC DC	1-056-714-0X 1-056-718-0X	\$710.00 \$1,010.00	4.94 (125.5)	3.88 (98.6)	1.53 (38.9)	13 <i>(</i> 5.9)
	IP 56		1-056-71S-0X	\$2,474.00	4.94 (125.5)	3.88 (98.6)	1.53 <i>(</i> 38.9)	22 (10)
	IP 23	AC DC			4.91 (124.7)	3.81 <i>(</i> 96. <i>8</i>)	1.53 <i>(38.9)</i>	12 (5.4)
6	IP 54	AC DC	1-056-722-0X 1-056-726-0X	\$700.00 \$1,000.00	4.94 (125.5)	3.88 (98.6)	1.53 <i>(</i> 38.9)	13 <i>(</i> 5.9)
(8)	IP 55	AC DC	1-056-724-0X 1-056-728-0X	\$775.00 \$1,075.00	4.94 (125.5)	3.88 (98.6)	1.53 <i>(</i> 38.9)	13 <i>(5.9)</i>
	IP 56	AC	1-056-72S-0X	\$2,539.00	4.94 (125.5)	3.88 (98.6)	1.53 <i>(38.9)</i>	22 (10)
	IP 23	AC 1-056-731-0X \$665.00 DC 1-056-735-0X \$965.00		4.91 (124.7)	3.81 <i>(</i> 96. <i>8</i>)	1.53 (38.9)	12 (5.4)	
10	IP 54	AC DC	1-056-732-0X 1-056-736-0X	32-0X \$805.00		3.88 (98.6)	1.53 <i>(38.9)</i>	13 <i>(</i> 5.9)
(14)	IP 55	AC DC			4.94 (125.5)	3.88 (98.6)	1.53 <i>(38.9)</i>	13 <i>(</i> 5.9)
	IP 56	AC	1-056-73S-0X	2,639.00	4.94 (125.5)	3.88 (98.6)	1.53 <i>(38.9)</i>	22 (10)

Nominal Static			Basic Mode	Number		ensions hes <i>(mi</i>		Wt.
Torque (Ib-ft) <i>(Nm)</i>	Enclosure	Туре	and List		Α	J	L	lbs (kg)
	IP 23	AC DC	1-056-741-0X 1-056-745-0X	\$765.00 \$1,065.00	4.91 (124.7)	3.81 <i>(96.8)</i>	1.53 <i>(</i> 38.9)	12 (5.4)
15	IP 54	AC DC	1-056-742-0X 1-056-746-0X	\$905.00 \$1,205.00	4.94 (125.5)	3.88 (98.6)	1.08 (27.4)	13 <i>(</i> 5.9)
(20)	IP 55	AC DC	1-056-744-0X 1-056-748-0X	\$980.00 \$1,280.00	4.94 (125.5)	3.88 (98.6)	1.08 <i>(27.4)</i>	13 <i>(5.9)</i>
	IP 56	AC 1-056-74S-0X		2,739.00	4.94 (125.5)	3.88 (98.6)	1.53 <i>(</i> 38.9)	22 (10)
	IP 23			\$855.00 \$1,155.00	5.36 (136.1)	3.81 <i>(</i> 96. <i>8</i>)	1.08 (27.4)	12 (5.4)
20	IP 54 AC		1-056-752-07 1-056-756-07	\$990.00 \$1,290.00	5.39 (136.9)	3.88 (98.6)	1.08 (27.4)	14 (6.3)
(27)	IP 55	AC DC	1-056-754-07 1-056-758-07	\$1,065.00 \$1,365.00	5.39 (136.9)	3.88 (98.6)	1.08 (27.4)	14 (6.3)
	IP 56	AC	1-056-75S-0X	2,824.00	5.39 (136.9)	3.88 (98.6)	1.08 (27.4)	22 (10)
	IP 23	AC DC	1-056-761-07 1-056-765-07	\$950.00 \$1,250.00	5.36 (136.1)	3.81 <i>(96.8)</i>	1.08 (27.4)	13 <i>(</i> 5.9)
25	IP 54	AC DC	1-056-762-07 1-056-766-07	\$1,085.00 \$1,385.00	5.39 (136.9)	3.88 (98.6)	1.08 (27.4)	14 (6.3)
(34)	IP 55			\$1,160.00 \$1,460.00	5.39 (136.9)	3.88 (98.6)	1.08 <i>(27.4)</i>	14 (6.3)
	IP 56	AC	1-056-76S-0X 2,919.00 (5.39 (136.9)	3.88 (98.6)	1.08 <i>(27.4)</i>	22 (10)

* X in 9th digit designates hub bore and shaft size.

Series 56,700 Continued

Engineering Specifications

Nominal Static Torque	No. of Friction		oil ze		Solenoid Rate①	The Capa	rmal city②	Inertia (Wk²)
lb-ft	Discs	AC	DC	cycle	s/min	hp-sec/m	in <i>(watts)</i>	lb - ft ²
(Nm)		70	DC	AC	DC	Horizontal	Vertical	(kgm² x 10-4)
1.5 (2)	1	4	4+	36	20	9 (112)	6.5 (80)	.008 (3.36)
3 (4)	1	4	4+	36	20	9 (112)	6.5 (80)	.008 (3.36)
6 (8)	1	K4	K4-	36	20	9 (112)	6.5 (80)	.008 (3.36)
10 <i>(14)</i>	2	K4	K4+	36	20	9 (112)	6.5 (80)	.014 (5.88)
15 (20)	2	K4+	M4+	36	20	9 (112)	6.5 (80)	.014 (5.88)
20 (27)	3	K4+	M4+	36	20	9 (112)	6.5 (80)	.020 (8.40)
25 (34)	3	M4+	P4+	36	20	9 (112)	6.5 <i>(80)</i>	.020 (8.40)

① Maximum solenoid cycle rate is based on ambient temperature of 72°F (22°C) with 50% duty cycle. Does not relate to brake cycle rate (see Thermal Capacity).

② Thermal capacity rating is based on ambient temperature of 72°F (22°C), stop time of one second or less, with no heat absorbed from motor. Refer to Selection Procedure Section.

Current Ratings (amperes)

Solenoid Coil	AC	Voltage	e: 60 Hz					Voltage	e: 50 Hz		Voltage: DC						
Size	Current	115	200	230	400	460	575	110	220	380	24	95	115	230			
4	inrush holding	3.6 .3	2.1 .2	1.8 .2			.7 .06	4.1 .3	2.1 .2	.9 .08	13.3 .3	3.6 .1	2.8 .05	1.5 .03			
4+	inrush holding	-	-			-	-	-	-	-	12.0 .4	4.7 .1	3.7 .08	2.0 .04			
K4	inrush holding	4.3 .3	2.5 .2					3.8 .4	1.9 .2	1.1 .08	17.5 .4	4.7 .1	3.7 .08	2.0 .04			
K4+	inrush holding	4.6 .4	2.5 .2	2.3 .2	1.2 .1	1.0 .1	.9 .08	4.9 .4	2.0 .2	1.0 .1	20.5 .5	7.5 .1	5.5 .08	2.0 .04			
M4	inrush holding	3.0 .6	1.7 .3	1.5 .3	.9 .2	.8 .1	.6 .1	-	-	.8 .1	-	-	-	-			
M4+	inrush holding	4.6 .4	2.5 .2	2.3 .2	1.2 .1			4.1 8 .4				2.0 .2	1.3 .1	30.3 .5	7.9 .1	5.5 .08	2.0 .04
P4+	inrush holding	-	-	_	_	-	_	_	_	-	30.3 .5	11.3 .1	8.4 .08	3.0 .04			

Ordering and Identification Information

The following example and tables provide information for selecting the appropriate three-letter suffix when ordering a Stearns Brake.

Example of a complete part number:

Torque-

1-056-731-05--FF ---- Lead wire position (internal and external, left and right)

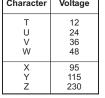
Series _____ 230 Vac

Does not apply

Enclosure _____ 5/8 hub bore and shaft

Hub Bore, Shaft and Keyway Sizes

9th Digit of Model No.	Bore Dia. (X)	Keyway**	Shaft Dia. (U)	Keyway**
5	.625	.19 x .09	.625	.19 x .09
7	.875	.19 x .09	.875	.19 x .09
8*	.875 with sleeve to convert to .625	.19 x .09	.625 with sleeve to convert to .875	.19 x .09


*One sleeve provided in each brake.

**Keyseats made to ANSI B17.1 standard.

Standard AC Voltage Ratings

Character	Voltage	Hz					
В	115	60					
D	110	50					
E	200	60					
F	230 190	60 50					
Н	220	50					
L	460 380	60 50					
М	415	50					
Ν	575	60					
0	110/220	50					
Р	115/208 230	60					
Q	208 230/460 190/380	60 50					
R	200/400	60					

Consult factory if other DC voltage is needed.

Modifications are available- see SAB Modification Section

SELECTION - Solenoid Actuated Brakes

NOTE: For overhauling/high inertia loads, to stop in a specified time/distance, or for brakes combined with variable frequency drives, please refer to *Application Engineering* Section.

Stearns Solenoid Actuated Brakes can be easily selected from Table 1 and 2.

Given motor data:

- 1. Horsepower (hp)
- 2. Speed (RPM)
- 3. NEMA C-face frame size
- Determine:

1. Static torque rating of the brake (lb-ft)

2. Brake series

Step 1 – Given the motor horsepower and speed, select the brake torque from Table 1. Torque in table 1 is calculated using formula:

$$T_{s} = \frac{5,252 \times P}{N} \times SF$$

Where, T_s = Static torque, Ib-ft

- P = Motor horsepower, hp
- N = Motor full load speed, rpm
- SF = Service Factor
- 5,252 = constant

Example: Given a 5 hp, 1800 RPM motor, the selected brake is 20 or 25 lb-ft.

Step 2 – Given the NEMA C-face motor frame size, select the brake series from Table 2. *Example:* Given the 5 hp, 1800 RPM motor in Step 1 with a NEMA 184TC frame, Series 87,000; 87,300 or 87,700 Brakes can be selected to mount directly to the motor.

Table 1 – Torque Selection

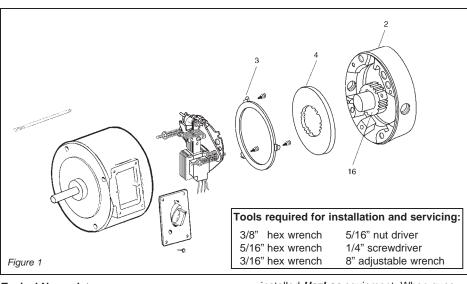
In this table, brake torque ratings are no less than 140% of the motor full load torque.

Brakemotor Shaft Speed (RPM)													
Motor hp	700	900	1200	1500	1800	3000	3600						
			Static Torqu	e Rating of	Brake (Ib-ft)							
1/6	3	1.5	1.5	1.5	0.75	0.5	0.5						
1/4	3	3		1.5	1.5	0.75	0.5						
1/3	6	3	3	3	1.5	1.5	0.75						
1/2	6	6	3	3	3	1.5	1.5						
3/4	10	6	6	6	6	3	3						
1	15	10	6	6	6	3 6	3						
1-1/2	20	15	10	10	10	6	3 3 6						
2	25	20	15	10	10	6	6						
3	35	25	20	15	15	10	6						
5	75	50	35	25	20 or 25	15	10						
7-1/2	105	75	50	50	35	25	15						
10	105	105	75	50	50	25	25						
15	175	125	105	75	75	50	35						
20	230	175	125	105	105	50	50						
25	330	230	175	125	105	75	50						
30	330	330	230	175	125	75	75						
40	440	330	330	230	175	105	105						
50	550	440	330	330	230	*	*						
60	750	500	440	330	330	*	*						
75	1000	750	500	440	330	*	*						
100	_	1000	750	500	440	*	*						
125	-	1000	1000	750	500	*	*						
150	-	-	1000	750	750	*	*						
200	-	-	-	1000	1000	*	*						
250	-	— —	— —	—	1000	*	*						

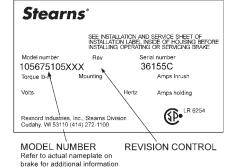
*See catalog pages for maximum rpm by series. Thermal capacity must be considered in load stops over 1800 rpm.

Table 2 – Brake Series Selection by NEMA Frame Size

		C-Face Motor Frame Size												
Torque Range (Ib-ft)	Brake Series	48C	56C 143TC 182TC 213TC 254UC 284UC 324UC 364U 145TC 184TC 215TC 256TC 286TC 326TC 365T						364TC 364UC 365TC 365UC	404TC 404UC 405TC 405UC	444TC 444UC 445TC 445UC	504UC 504SC 505C 505SC		
Manually-Adjusted Brakes (require periodic adjustment to compensate for friction disc wear)														
1.5-6 1.5-25 10-25	48,100 56,X00 56,500	1	1	1	2 1	2	2							
Self-Adjus	ting Brakes	s (automati	ically comp	ensate for	friction dis	sc wear)								
6-105 50-105 125-230 125-440 500-1000 500-1000	87,X00 87,100 81,000 82,000 86,000 86,100		3	3	1 2 2	1 2 2	1 2 2	2 2 2	2 1 1 2	2 1 2	2 (1) (1) (2)	2 2 1	(1)	
Division I I	Hazardous	Location E	Brakes (for	atmospher	es contain	ing explosi	ve gases o	r ignitable	dusts) / Mo	otor Mounte	ed			
1.5-15 10-105 125-330	65,300 87,300 82,300		1	1	2 ① ②	2 1 2	2 (1) (2)	2	2 1	2 1	2 1	2		
Division I I	Hazardous	Location E	Brakes (for	atmospher	es contain	ing explosi	ve gases o	r ignitable	dusts) / Fo	ot Mounted	1			
10-105 125-330	87,300 82,300				4	4	4		4	4	4			
Division 2	Hazardous	Location I	Brakes											
1.5-25 6-105	56,800 87,800		1 3	(1) (3)	2 1	2 1	2 1	2	2	2	2			
Double C-F	ace Brake	Couplers	(for direct	coupling a	C-face mot	tor to a C-fa	ace gear re	ducer)						
1.5-25 10-105	56,700 87,700		1	1	1	1	1							


Brake mounts directly to motor C-face.

2 Adapter required to mount brake to motor C-face. Refer to brake specifications for adapter information.


③ Brake endplate modified for direct mounting to motor C-face without an adapter.

(4) Brake is foot mounted for coupling to a hazardous-location motor.

Installation and Service Instructions for 1-056-700 Series (rev. A & B) Double C-Face Coupler

Typical Nameplate

Important

Please read these instructions carefully before installing, operating, or servicing your Stearns Brake. Failure to comply with these instructions could cause injury to personnel and/or damage to property if the brake is installed or operated incorrectly. For definition of limited warranty/ liability, contact Rexnord Industries, LLC, Stearns Division, 5150 S. International Dr., Cudahy, WI 53110, (414) 272-1100.

Caution

- Installation and servicing must be made in compliance with all local safety codes including Occupational Safety and Health Act (OSHA). All wiring and electrical connections must comply with the National Electric Code (NEC) and local electric codes in effect.
- 2. Use of this brake in atmospheres containing explosive gases and dusts must be in accordance with NEC article 501. This brake is not suitable for use in certain atmospheres containing explosive gases and dusts. *HazLoc* inspection authorities are responsible for verifying and authorizing the use of suitably designed and

installed *HazLoc* equipment. When questions arise consult local *Authority Having Jurisdiction (AHJ)*.

- To prevent an electrical hazard, disconnect power source before working on the brake. If power disconnect point is out of sight, lock disconnect in the *off* position and tag to prevent accidental application of power.
- 4. Make certain power source conforms to the requirements specified on the brake nameplate.
- Be careful when touching the exterior of an operating brake. Allow sufficient time for brake to cool before disassembly. Surfaces may be hot enough to be painful or cause injury.
- Do not operate brake with housing removed. All moving parts should be guarded.
- Installation and servicing should be performed only by qualified personnel familiar with the construction and operation of the brake.
- For proper performance and operation, only genuine Stearns parts should be used for repairs and replacements.
- After usage, the brake interior will contain burnt and degraded friction material dust. This dust must be removed before servicing or adjusting the brake.

DO NOT BLOW OFF DUST using an air hose. It is important to avoid dispersing dust into the air or inhaling it, as this may be dangerous to your health.

a) Wear a filtered mask or a respirator while removing dust from the inside of a brake.

b) Use a vacuum cleaner or a soft brush to remove dust from the brake. When brush-

BACK TO PRODUCT PAGE

P/N 8-078-905-67 effective 04/03/09

For replacement parts refer to sheet part number 8-078-906-07. Instructions and parts list also available at www.stearns.rexnord.com.

ing, avoid causing the dust to become airborne. Collect the dust in a container, such as a bag, which can be sealed off.

- Caution! While the brake is equipped with a manual release to allow manual shaft rotation, the motor should not be run with the manual release engaged, to avoid overheating the friction disc(s).
- 11. Do not apply overhung or side load to brake output shaft.

General Description

The 56,700 Series coupler is a spring-set, electronically released brake, containing either one or more rotating friction discs (4) driven by a hub (16) mounted on the motor shaft. The double C-face allows the brake to directly couple a C-face motor to a C-face gear reducer. **Note:** Fan-guard mounted brakes requiring IP54 & IP55 protection may require additional sealing measures beyond seals provided with this brake. Pressurized sprays aimed at the fan and brake hub surfaces can result in fluid migration along the motor shaft and keyway, and into the brake. The use of an appropriate sealant such as *RTV* or a *forsheda* seal is advised.

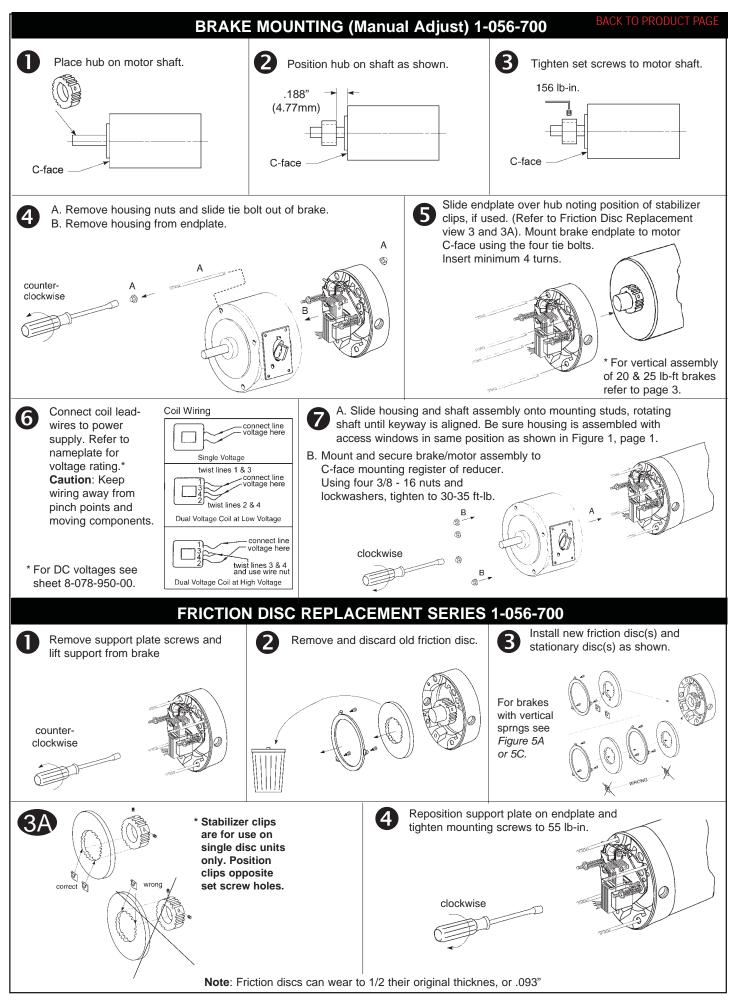
Operating Principle

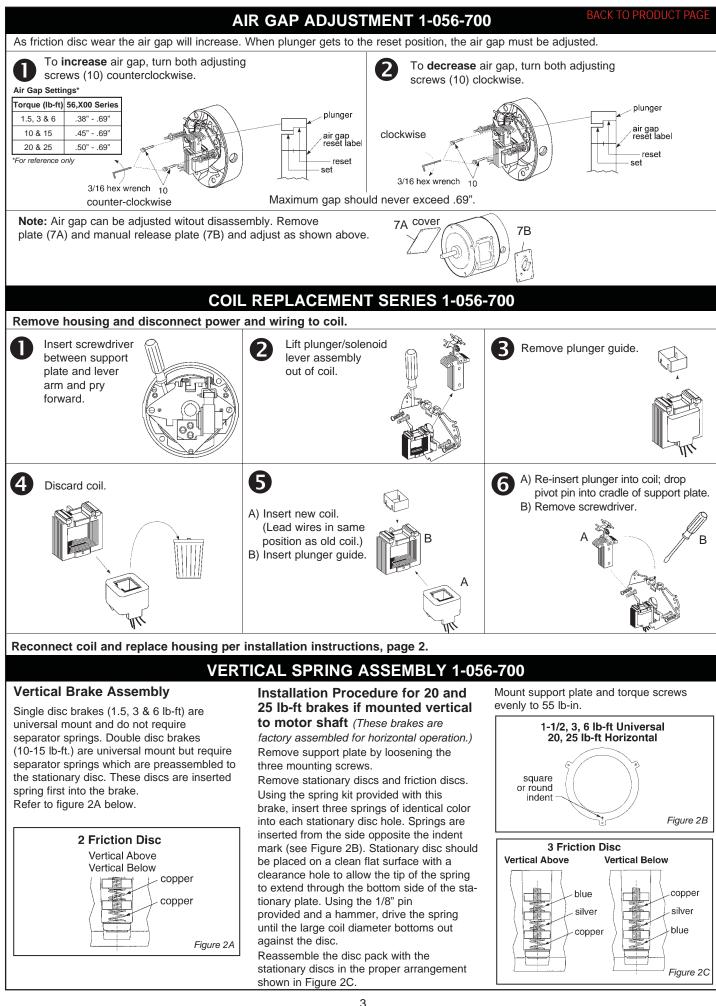
Warning! Do not apply overhung or die load to brake output shaft.

These series contain one or more friction discs (4) assembled alternately between the endplate (2) friction surface, stationary disc(s) (3) and pressure plate (also called stationary disc) (3). The stationary disc(s) are restrained from rotating by being keyed into the endplate. With the brake released, all disc pack components are free to slide axially and the friction disc(s) to rotate.

Brake release occurs when the solenoid coil is electrically energized, causing the solenoid plunger to travel a specified distance and through a lever system, overcoming the pressure spring force. This action releases the clamping force

on the disc pack, thereby allowing the friction disc(s) and brake hub to rotate.


Brake sets and torque is produced when electric current to the solenoid coil is


interrupted, thereby collapsing the

solenoid magnetic field. The solenoid plunger returns to its original

de-energized position allowing the lever arm to move forward by virtue of the

compressed torque springs. This action compresses the disc pack components which applies a retarding torque to the brake hub and ultimately restores the brake to a spring-set static condition.

TORQUE ADJUSTMENT

BACK TO PRODUCT PAGE

Torque Adjustment

Brake is factory set for nominal rated static torque which is maximum torque. Torque may be decreased up to 50% for increased stopping times up to 2 second stop time.

The torque on the 1-1/2 lb-ft brake may not be reduced.

Turn both spring adjustment screws (11), Figure 3, equal amounts counterclockwise to decrease torque. See Table A for torque reduction permissible amounts.

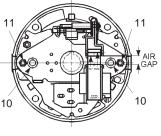


Figure 3

Nominal Static Torque (lb-ft)	Original Spring Height (inches)	Maximum Counter- clockwise Turns	% Torque Reduction per Turn							
1-1/2	1.69"	-	-							
3	1.47"									
6	1.47"									
10	1.53"	5-1/2	9%							
15	1.53"									
20	1.53"									
25	5 1.47"									

TROUBLESHOOTING

COIL FAILURE SUPPLY VOLTAGE CAUSE SUPPLY VOLTAGE CORRECTION Line voltage >110% of coil rating Reduce voltage or replace with proper rated coil AC input on a DC coil Replace rectifier or replace with proper rated coil. Excessive voltage drop during inrush time Increase current rating of power supply. WIRING CAUSE WIRING CORRECTION Leadwires interfering with plunger pull-in Reroute wiring away from plunger and other moving components. Excessive voltage drop during inrush time Increase leadwires size from power supply. Coil leadwire shorted to ground Replace coil or leadwire and protect with wire sleeving SOLENOID ASSEMBLY CAUSE SOLENOID ASSEMBLY CORRECTION Plunger not seating flush against solenoid frame Loosen solenoid mounting screws and reposition frame to allow full face contact Plunger cocked in coil preventing pull-in Realign solenoid frame Excessive solenoid/plunger wear at mating surface Replace solenoid assembly Broken shading coils Replace link arm and link bolt; also inspect plunger thru-hole for elongation Plunger guides worn down and interfering with plunger movement Replace guides APPLICATION CAUSE APPLICATION CORRECTION Machinery cycler rate is exceeding rate c							
SUPPLY VOLTAGE CAUSE	SUPPLY VOLTAGE CORRECTION						
Line voltage >110% of coil rating							
AC input on a DC coil							
WIRING CAUSE	WIRING CORRECTION						
• • •							
Coil leadwire shorted to ground							
SOLENOID ASSEMBLY CAUSE							
	and reposition frame to allow full						
	Realign solenoid frame						
	Replace solenoid assembly						
Broken shading coils	Replace solenoid assembly						
WORN PARTS CAUSE	WORN PARTS CORRECTION						
	inspect plunger thru-hole for						
interfering with plunger	Replace guides						
APPLICATION CAUSE	APPLICATION CORRECTION						
(>110%) and thermal load exceeding coil insulation rating							
Brake coil wired with windings of an Inverter motor or other voltage/current limiting device	Wire coil to dedicated power source with instantaneous coil rated voltage						
MISCELLANEOUS CAUSE	MISCELLANEOUS CORRECTION						
Wrong or over tightened torque	Replace with proper spring or refer to Installation section for proper spring height						
Excessive air gap	Reset, refer to Installation Section 4						

AIR GAP CORRECTION AIR GAP CAUSE Low solenoid air gap Reset air gap (refer to Air Gap Adjustment) Disc pack dragging Inspect endplate, hub and discs for dirt, burrs, wiring and other sources of interference preventing disc "float" CYCLE RATE CAUSE CYCLE RATE CORRECTION Brake "jogging" exceeding coil Reduce cycle rate or consider altercycle rate nate control method Reduce cycle rate, use alternate Thermal capacity is being control method or increase brake exceeded size ALIGNMENT CAUSE ALIGNMENT CORRECTION Broke endplate not concentric to Motor register must be within motor C-Face .004" on concentricity; Must be within .002"; runout; Motor shaft runout is excessive consult motor manufacturer Brake is being operated on a Vertical separator springs must be incline greater than 15° above or used to prevent discs from below horizontal becoming cocked WORN PARTS CAUSE WORN PARTS CORRECTION Friction disc excessively worn Replace friction discs. (disc can wear to 1/2 original thickness or .093") Endplate, stationary disc or Replace warped or worn component pressure plate warped Linkages and/or pivot pins worn Replace all worn components Motor shaft endfloat excessive Endfloat must not exceed .020"; consult motor manufacturer HUB CAUSE **HUB CORRECTION** File off burr Burr on hub interfering with disc "float" Set screw backed out and Retighten set screw; use Loctite® interfering with disc 242 to help secure MISCELLANEOUS **MISCELLANEOUS** Solenoid plunger not pulling Check line voltage (±10% of nameplate rating) or replace worn completely solenoid assembly Wiring is restricting disc pack Reroute wiring

EXCESSIVE WEAR / OVERHEATING

 S CORRECTION
 movement

 r spring or refer
 Excessive stop time (2 seconds or greater)
 Increase brake size/torque or use alternate control method

 High Ambient temperature (in excess of 110°F)
 Reduce cycle rate or use alternate method of cooling

Rexnord Industries, LLC, Stearns Division, 5150 S. International Dr., Cudahy, WI 53110, (414) 272-1100 Fax: (414) 277-4364 www.stearns.rexnord.com

Stearns[®] Spring-Set Disc Brakes

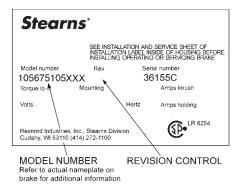
Parts List for 1-056-700 Series (rev. A & B) **Double C-Face Coupler**

BACK TO PRODUCT PAGE

P/N 8-078-906-07 effective 01/31/08

For Installation and Service Instructions refer to sheet part number 8-078-905-67. Instructions and parts list also available at www.stearns.rexnord.com.

2


16

hex wrench 5/16" hex wrench

3/16" hex wrench

3/8"

Important

Please read these instructions carefully before installing, operating, or servicing your Stearns Brake. Failure to comply with these instructions could cause injury to personnel and/or damage to property if the brake is installed or operated incorrectly. For definition of limited warranty/liability, contact Rexnord Industries, LLC, Stearns Division, 5150 S. International Dr., Cudahy, WI 53110, (414) 272-1100.

Caution

1. Installation and servicing must be made in compliance with all local safety codes including Occupational Safety and Health Act (OSHA). All wiring and electrical connections must comply with the National Electric Code (NEC) and local electric codes in effect.

- 2. Do not install the brake in atmospheres containing explosive gases or dusts.
- 3. To prevent an electrical hazard, disconnect power source before working on the brake. If power disconnect point is out of sight, lock disconnect in the off position and tag to prevent accidental application of power.
- 4. Make certain power source conforms to the requirements specified on the brake nameplate.
- 5. Be careful when touching the exterior of an operating brake. Allow sufficient time for brake to cool before disassembly. Surfaces may be hot enough to be painful or cause injury.
- 6. Do not operate brake with housing removed. All moving parts should be guarded.
- 7. Installation and servicing should be performed only by qualified personnel familiar with the construction and operation of the brake.
- 8. For proper performance and operation, only genuine Stearns parts should be used for repairs and replacements.
- 9. After usage, the brake interior will contain burnt and degraded friction material dust. This dust must be removed before servicing or adjusting the brake.

DO NOT BLOW OFF DUST using an air hose. It is important to avoid dispersing dust into the air or inhaling it, as this may be dangerous to your health.

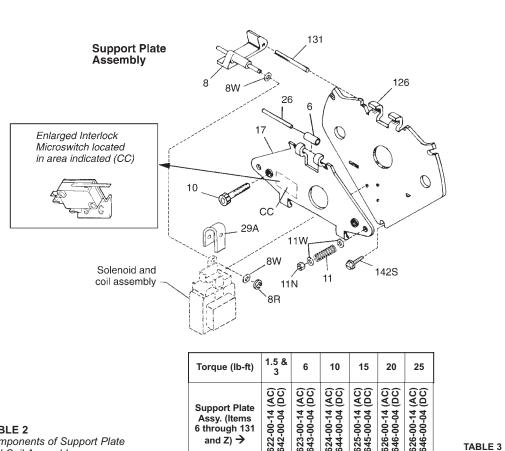
5/16" nut driver

1/4" screwdriver

8" adjustable wrench

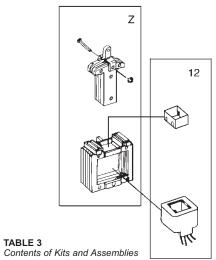
Tools required for installation and servicing:

- a) Wear a filtered mask or a respirator while removing dust from the inside of a brake.
- b) Use a vacuum cleaner or a soft brush to remove dust from the brake. When brushing, avoid causing the dust to become airborne. Collect the dust in a container, such as a bag, which can be sealed off.


Caution! While the brake is equipped with a manual release to allow manual shaft rotation, the motor should not be run with the manual release engaged, to avoid overheating the friction disc(s).

Give and b	part number of parts or kits needed, brake serial number. The brake mod fy special brakes not covered by thi	brake model nur	mb	er,																5		(IC					'AG	L		
Wher	n ordering hubs, specify shaft diame eyway.																					6		AS OF	en la		\setminus			
Enclo	sure is specified as follows:																					/				6	₽₹	-@	D	
NEM/ DTV NEM/	A 1 (formerly referred to as standard A 4 (formerly referred to as VP dust-tight waterproof) A 4X (formerly referred to as SC washdown) 7A 7A				7F					t pla ne	xt	pag	ge)	B)	»		1 ser as	4	4) C	All Control of the second seco		16	10	2		100)	 2A	٨	
A	75	(NEM	A 4																											_
0		Torque (lb-ft)			1.5						6				• •	1						15		~	+			& 25		-
		Current NEMA Enclosure		AC 4		2		4X		4C			DC 4 4	X 2	AC	; 4X			42		AC	4X		C 4 4)	X 2		; 4X		DC 4 4	
TABLE Compo	1 nents of Standard AC or DC Brake	Brake Model Number →	& 711-00	& 712-00	& 714-00	& 715-00	& 716-00	& 718-00																	& 761-00	& 762-00	& 764-00	& 765-00	& 766-00	& 768-00
ltem	Description	Part Number ↓	1-056-701-00	1-056-702-00	1-056-704-00	1-056-705-00	1-056-706-00	1-056-708-00	1-056-721-00	1-056-722-00	1-050-724-00	1-056-725-00	1-056-726-00	1-056-731-00	1-056-732-00	1-056-734-00	1-056-735-00	1-056-736-00	1-056-738-00	1-056-741-00	1-056-742-00	1-056-744-00	1-056-745-00	1-056-748-00	1-056-751-00	1-056-752-00	1-056-754-00	1-056-755-00	1-056-756-00	1-056-758-00
A	Coupler brake shaft kit (5/8 diameter) Coupler brake shaft kit (7/8 diameter) Coupler brake shaft kit - 3 disc (7/8 dia.)	5-66-8865-00 5-66-8867-00 5-66-8869-00	1 1	1	1	1	1 1 1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1			1 1		1	1	1	1	1							
7	Housing - standard (NEMA 2) Housing - DTWP (NEMA 4) Housing - BISSC (NEMA 4X)	8-007-527-09 8-007-527-11 8-007-527-12	1	1	1	1	1	1	1	1	1			1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1
7S 7A	Mounting stud kit (NEMA 2 & 4) Mounting stud kit (NEMA 4X) Access cover (NEMA 2) Access cover (NEMA 4) Access cover (NEMA 4X)	5-96-0527-00 5-96-0528-00 8-104-505-00 8-104-506-00 8-104-506-01	1	1	1 1	1	1	1 1	1	1	1	1	1	1 1 1 1	1	1	1	1	1 1	1	1	1	1	1 1 1 1	1		1	1	1	1
7B 7R	Manual release assembly (NEMA 2) Manual release assembly (NEMA 4) Manual release assembly (NEMA 4X) Machine screw	5-07-5033-00 5-07-5037-00 5-07-5038-00 9-25-7321-00	1 4	1 12	1 12	1 4	1 12	1 12	1 4	1 12 1	1		1 12 1	1 1 12 4	1 12	1 12	1 4	1 12	1 12	1	1 12	1		1 1 2 12	1 2 4	1	1	1	1 12 ⁻	1 12
not shown	Release Knob Kit	5-63-5503-00		1	1		1	1		1	1		1	1	1	1		1	1		1	1		1 1		1	1		1	1
not shown	Gasket - access cover (NEMA 4 & 4X)	8-073-504-00		2	2		2	2		_	2	+	_	2	2			2	2		-	2	:	2 2	-	2	+		_	2
not shown	Gasket - housing to endplate (NEMA 4 & 4X)	8-069-506-00		1	1		1	1		1	1		1	1	1	1		1	1		1	1		1 1		1	1		1	1
not shown 7P	Gasket - brake ends (NEMA 4 & 4X) Pipe plug (drain)	8-122-501-00		2	2	_	2	2		2	2		2	2	2	2		2	2		2	2		2 2	ļ	2	2		2	2
	Pipe plug (stainless drain)	9-33-0325-01			1			1			1			1	Ľ	1		·	1			1		1		Ĺ	1			1
3 3A 3B	Stationary disc kit (1 disc universal 3 disc horizontal) Stationary disc kit (2 disc universal) Stationary disc kit (3 disc vertical)	5-66-8354-00 5-66-8355-00 5-66-8356-00	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1 1	3					3 1
4 4C	Friction disc kit Stabilizing clip (part of 5-66-8462-00)	5-66-8462-00	1 2					2 2		2	2 *	2 *	2 *	2 *	2	2		2 2	3	3 3	3	3 *	3 *	3 *						
40 4DP	Disc pack kit (1 disc) Disc pack kit (2 disc) Disc pack kit (3 disc)	5-66-8601-00 5-66-8602-00 5-66-8603-00		1					1				1	1 1			1	1	1	1		1	1	1 1	1	1	1	1	1	1
16	Hub (5/8 bore) Hub (7/8 bore) 3 disc (7/8 bore)	5-16-5150-00-01-B 5-16-5150-00-01D 5-16-5153-01	1 1			1	1	1 1 1 1	1	1	1 1	1 1	1 1	1 1	1 1	1	1	1 1	1					1						
2	Endplate 1 & 2 disc (NEMA 2 & 4) 1 & 2 disc (NEMA 4X) 3 disc (NEMA 2 & 4) 3 disc (NEMA 4X)	5-02-5035-00 5-02-5039-00 5-02-5036-00 5-02-5040-00	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2A	Pipe plug - external lead holes Pipe plug - stainless (ext. lead holes)	9-33-0914-00 9-33-0624-00	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

BACK TO PRODUCT PAGE


Information required when ordering replacement parts:

* Certain multiple friction disc model numbers require a single stabilizer clip (D1) added to each friction disc. If your particular brake model has this clip on the discs, as received, it must be replaced whenever the friction disc is replaced. This clip is included as part of the friction disc kit 5-66-8462-00.

For DC coil/Solenoid parts refer to Instruction Sheet 8-078-950-00

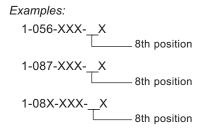
Solenoid and Coil Assembly

Letter Desig- Kit Description nation	
A	Coupler brake shaft kit 5/8" shaft (5-66-8865-00) 7/8" shaft (5-66-8867-00) 3 disc 7/8" shaft (5-66-8869-00) 1 – Hub and set screw assembly 1 – Ball bearing 1 – Housing retaining ring 1 – Brake shaft 1 – Brake shaft key
3	Stationary disc kit (5-66-8354-00) 1 – Stationary disc
3A	Stationary disc kit (5-66-8355-00) 2 – Stationary discs with springs
3B	Stationary disc kit (5-66-8356-00) 3 – Stationary discs with springs
4	Friction disc kit (5-66-8462-00) 1 – Friction disc 2 – Stabilizing springs (for 1-1/2-6 lb-ft brake use only)
4DP	Disc pack kit (5-66-860X-00) 1,2 or 3 – Friction disc(s) 1,2 or 3 – Stationary disc(s) 2 – Stabilizing springs (for 1-1/2-6 lb-ft brake use only) 3,6 or 9 – Stationary disc separator springs
7S	Mounting stud kit (5-96-052X-00) 4 - Mounting studs 4- Lock washers 4 - Nuts
Z	No. 4 solenoid kit (5-66-5047-00) (5-96-5047-0 1 – Plunger (5-63-5047-01) 1 – Solenoid link 1 – Frame (including mounting bracket) 1 – Solenoid link cap screw 1 – Solenoid link nut 3 – Solenoid mounting screws
12	No. 4 AC coil kit (5-66-64XX-X3) Coil Top Plunger guide Wire nut
сс	Brake release interlock switch (5-57-5526-00) 1 – Microswitch 1 – Mounting bracket 2 – Bracket mounting screws 2 – Switch mounting screws 2 – Lead wire assembly

			Torque (lb-ft)	1.5 & 3	6	10	15	20	25
		Support Plate ly	Support Plate Assy. (Items 6 through 131 and Z) →	5-42-5622-00-14 (AC) 5-42-5642-00-04 (DC)	5-42-5623-00-14 (AC) 5-42-5643-00-04 (DC)	5-42-5624-00-14 (AC) 5-42-5644-00-04 (DC)	5-42-5625-00-14 (AC) 5-42-5645-00-04 (DC)	5-42-5626-00-14 (AC) 5-42-5646-00-04 (DC)	5-42-5626-00-14 (AC)
ltem		Description	Part Number 🗸	44	2 2	2 2	272	2 4	1 1 1 1
6 8 8R 8W	Bearing Solenoid le Retaining ri Spacer		8-006-501-00 8-008-504-01 9-03-0057-00 9-45-0168-00	1 1 1 2	1 1 1 2	1 1 1 2	1 1 1 2	1 1 1 2	1 1 1 2
11N 10	Torque adju Wear adjus	istment nut tment screw	9-40-3928-00 9-17-8420-00	2 2	2	2 2	2	2	2 2
10 11 11W	Pressure sp Pressure sp Pressure sp Spring was	pring pring pring	9-70-1215-00 9-70-1523-00 9-70-1524-00 9-46-0010-00	2	2	2	2 4	2 4	2 2 4
17 26 29A	Lever arm a Bearing pin Plunger sto		5-17-5011-00 9-29-4826-00 8-094-503-00	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1
126	Support pla	te and spring stud assembly	5-26-5021-00	1	1	1	1	1	1
131 142S	Pivot pin Mounting screws		9-29-4836-00 9-25-9013-00	1 3	1 3	1 3	1 3	1 3	1 3
-	rakes		5 00 50 17 00						
Z	No. 4 solen	oid kit (rev A & B) (rev B only)	5-66-5047-00 5-96-5047-01	1 1	1 1	1 1	1 1	1 1	1 1
	No. 4 coil kit 60 Hz	115/230 Vac 230/460 Vac 115 Vac 230 Vac 460 Vac 575 Vac	5-66-6407-33 5-66-6409-33 5-66-6401-33 5-66-6402-33 5-66-6404-33 5-66-6405-33	1 1 1 1 1					
12**	No. K4 coil kit 60 Hz	115/230 Vac 230/460 Vac 115 Vac 230 Vac 460 Vac 575 Vac	$\begin{array}{c} 5-66-6457-33\\ 5-66-6459-33\\ 5-66-6451-33\\ 5-66-6452-33\\ 5-66-6452-33\\ 5-66-6454-33\\ 5-66-6455-33\end{array}$		1 1 1 1 1	1 1 1 1			
12	No. K4+ coil kit 60 Hz	115/230 Vac 230/460 Vac 115 Vac 230 Vac 460 Vac 575 Vac	5-66-6407-23 5-66-6409-23 5-66-6401-23 5-66-6402-23 5-66-6404-23 5-66-6405-23				1 1 1 1	1 1 1 1	
	No. M4+ coil kit 60 Hz	115/230 Vac 230/460 Vac 115 Vac 230 Vac 460 Vac 575 Vac	5-66-6457-23 5-66-6459-23 5-66-6451-23 5-66-6452-23 5-66-6452-23 5-66-6455-23						1 1 1 1 1
сс	Brake relea	se interlock switch	5-57-5526-00	1	1	1	1	1	1

		Torque (Ib-ft)	1.5, 3 & 6	10 & 15	20 & 25
TABLE 4		Brake Model Number →	-056-70X 1-056-71X 1-056-72X	1-056-73X 1-056-74X	1-056-75X 1-056-76X
Catalog Mod Number	Description	Part Number ↓	1-056		
M4	Brass Stationary Disc	8-003-513-02	1	2	3
M13	Space Heater 115 Vac 230 Vac	5-27-2004-00 5-27-2005-00	1 1	1 1	1 1
M17	Terminal Strip	5-63-0524-00	1	1	1
M21	Vertical Spring Kit (2 disc) (3 disc)	5-63-0539-00 5-63-0525-00		1	1

			Torque (Ib-ft)	1.5 & 3	6 & 10	15 & 20	25
			Brake Model Number →	1-056-701-00 1-056-711-00	1-056-721-00 1-056-731-00	1-056-741-00 1-056-751-00	1-056-761-00
Catalog Mod Number	Des	cription	Part Number ↓	~ ~		~ ~	~
	No. 4 Class 'H' coil kit 60 Hz	115/230 Vac 230/460 Vac 115 Vac 230 Vac 460 Vac 575 Vac	5-96-6407-05 5-96-6409-05 5-96-6401-05 5-96-6402-05 5-96-6404-05 5-96-6405-05	1 1 1 1 1			
M6	No. K4 Class 'H' coil kit 60 Hz	115/230 Vac 230/460 Vac 115 Vac 230 Vac 460 Vac 575 Vac	5-96-6457-05 5-96-6459-05 5-96-6451-05 5-96-6452-05 5-96-6452-05 5-96-6455-05		1 1 1 1 1		
INIO	No. K4+ Class 'H' coil kit 60 Hz	115/230 Vac 230/460 Vac 115 Vac 230 Vac 460 Vac 575 Vac	5-96-6407-25 5-96-6409-25 5-96-6401-25 5-96-6402-25 5-96-6404-25 5-96-6405-25			1 1 1 1 1	
	No. M4+ Class 'H' coil kit 60 Hz	115/230 Vac 230/460 Vac 115 Vac 230 Vac 460 Vac 575 Vac	5-96-6457-25 5-96-6459-25 5-96-6451-25 5-96-6452-25 5-96-6454-25 5-96-6455-25				1 1 1 1 1


Rexnord Industries, LLC Steams Division 5150 S. International Drive Cudahy, Wisconsin 53110 (414) 272-1100 Fax: (414) 277-4364 www.stearns.rexnord.com

Information Needed for Modifications

Stearns is dedicated to providing you with the most comprehensive selection of modified spring-set disc brakes on the market today. We have included a list of our more popular modifications complete with descriptions, pictures and graphics when applicable and list price adders along with their representative series. Note that modification list prices are subject to the same discounts as apply to the complete brake assembly.

Below please find examples of how the modifications are called out with a letter in the 8th position of the 12 digit model number. Note that these listings are not complete, but represent our more popular selections. For any special applications and modification requirements not found here, please contact your Stearns representative.

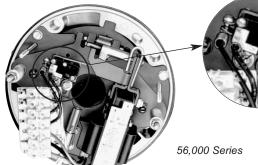
IMPORTANT – The modification letter will appear in the *8th position* to call out the modification.

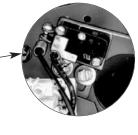
See specific tables for some of the available options of the series required.

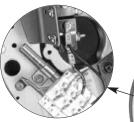
If two or more letter modifications are required, the 8th position of the part number will remain zero and position 10, 11 and 12 will be assigned by Stearns as a special part number.

All Series

Modification	Letter
Vertical Mounting - Above Motor	A
Class H Insulation	н
Space Heater (115 Volt Circuit)	I
Space Heater (115 Volt Circuit), Brass Pressure Plate and Stationary Disc	J
Brass Pressure Plate and Stationary Disc	к
Vertical Mounting - Below Motor	L
Thru-Shaft Housing (Standard)	Q
Vertical Mounting - Above Motor and Class H Insulation	т
Electrical Release Indicator Switch, N.O. contacts	w
Side Manual Release with Shaft Through Housing Stamped Steel	Z
Series 87,X00 Only	
Vertical Mounting - Above Motor, Brass Pressure Plate and Stationary Disc	N
Series 81,X00, 82,X00 87,000 and 87,100	
Side Manual Release	Y


Solenoid Actuated Brakes Modification Index

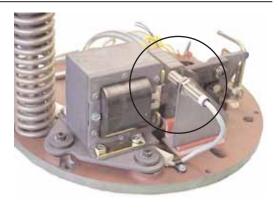

Category	Description	Modification Number (M)	Page
	Class H Insulation	M6	53
	DC Coil Option	M9	54
Coils	Non-Standard Voltage AC	M25	57
	Non-Standard Voltage DC	M9	54
	Special Leadwire Length	M31	58
	Brass Pressure Plate	M3	52
	Brass Stationary Disc	M4	52
	Breather Drain	M5	53
	Space Heater (115 or 230 volt)	M13	54
Corrosion Resistance	Special Paint	M14	55
Resistance	Stainless Steel Self-Adjust	M15	55
	Stainless Steel Hardware	M16	55
	Corrosion-Resistant Endplate	M39	59
	Stainless Steel Hub	M42	59
	Special Internal Leadwire Hole	M35	58
Endplates	Corrosion-Resistant Endplate	M35 M39	59
Enuplates	•	M39 M40	59
	Special Milling: Flat Bottom on Housing & Endplate	-	
Friction	Special Material Friction Disc	M44	60
Discs	Carrier Ring Disc (Cast Iron)	M46	60
	Carrier Ring Disc (Bronze)	M47	60
Gaskets	Motor Gasket	M38	59
	Viton® Gasket	M43	60
	Non-Standard Bore or Keyway	M11	54
	Special Shaft - Coupler Brakes	M29	57
Hubs/ Brake Shaft	Taper-Lock Hubs	M30	58
Drake onan	Stainless Steel Hub	M42	59
	Splined Hub and Friction Disc	M45	60
	Encoder/Tach Machining	M7	53
Machining Options	Metric Machining	M33	58
	Special Milling: Flat Bottom on Housing & Endplate	M40	59
Manual Adjust	Manual Adjust for 87,000 Series	M48	60
Manual Aujust			
Manual Release	Side Manual Release	M12	54
	Non-Maintained (Deadman)	M32	58
	Internal Release	M37	59
	Vertical	M21, M23, M24	56-57
Mounting	Metric Machining	M33	58
5	Motor Frame Adapters		94
	Foot Mounting Kits		95
Nameplates	Mylar or Metal	M10	54
Maineplates			
	Brass Nameplate	M41	59
	Brass Nameplate Brass Pressure Plate	M41 M3	59 52
Dc:-4/	Brass Pressure Plate	M3	52
Paint/ Special Finish	Brass Pressure Plate Brass Stationary Disc Special Paint	M3 M4	52 52
	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust	M3 M4 M14	52 52 55
Special Finish	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware	M3 M4 M14 M15 M16	52 52 55 55 55
Special Finish	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate	M3 M4 M14 M15 M16 M39	52 52 55 55 55 55 59
Special Finish	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub	M3 M4 M14 M15 M16 M39 M42	52 52 55 55 55 59 59
Special Finish	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2	M3 M4 M14 M15 M16 M39 M42 M19	52 52 55 55 55 59 59 56
Special Finish or Material	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X	M3 M4 M14 M15 M16 M39 M42 M19 M20	52 52 55 55 59 59 56 56
Special Finish or Material Special	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Split Housing	M3 M4 M14 M15 M16 M39 M42 M19 M20 M36	52 52 55 55 55 59 59 50 56 56 50
Special Finish or Material Special	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Split Housing Electrical Release Indicator	M3 M4 M14 M15 M16 M39 M42 M19 M20 M36 M1	52 55 55 55 59 59 50 56 56 50 59 52
Special Finish or Material Special	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Split Housing Electrical Release Indicator Electrical Release Indicator Proximity Switch	M3 M4 M14 M15 M16 M39 M42 M19 M20 M36 M1 M2	52 55 55 55 59 59 50 56 56 50 52 52
Special Finish or Material Special Housing	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Split Housing Electrical Release Indicator Electrical Release Indicator Proximity Switch Thermal Switch	M3 M4 M14 M15 M16 M39 M42 M19 M20 M36 M1 M2 M1 M2 M18	52 55 55 59 59 56 56 56 59 52 52 55
Special Finish or Material Special Housing	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Split Housing Electrical Release Indicator Electrical Release Indicator Proximity Switch Thermal Switch Wear Indicator	M3 M4 M14 M15 M16 M39 M42 M19 M20 M36 M1 M2 M18 M27	52 55 55 55 59 59 59 50 50 50 52 52 55 55 57
Special Finish or Material Special Housing Switches	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Split Housing Electrical Release Indicator Electrical Release Indicator Proximity Switch Thermal Switch	M3 M4 M14 M15 M16 M39 M42 M19 M20 M36 M1 M2 M1 M2 M18	52 55 55 59 59 56 56 56 59 52 52 55
Special Finish or Material Special Housing Switches Tach	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Split Housing Electrical Release Indicator Electrical Release Indicator Proximity Switch Thermal Switch Wear Indicator	M3 M4 M14 M15 M16 M39 M42 M19 M20 M36 M1 M2 M18 M27	52 55 55 55 59 59 59 50 50 50 52 52 55 55 57
Special Finish or Material Special Housing Switches	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Split Housing Electrical Release Indicator Electrical Release Indicator Proximity Switch Thermal Switch Wear Indicator Tach Machining	M3 M4 M14 M15 M16 M39 M42 M19 M20 M36 M1 M2 M18 M27 M18 M27 M7	52 55 55 59 59 50 50 50 50 52 52 55 57 53
Special Finish or Material Special Housing Switches Tach Mounting	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Split Housing Electrical Release Indicator Electrical Release Indicator Proximity Switch Thermal Switch Wear Indicator Tach Machining Thru-Shaft NEMA 2	M3 M4 M14 M15 M16 M39 M42 M19 M20 M36 M1 M2 M18 M27 M18 M27 M7 M7 M19	52 55 55 59 59 56 56 59 52 52 52 55 57 53 56
Special Finish or Material Special Housing Switches Tach Mounting Torque	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Split Housing Electrical Release Indicator Electrical Release Indicator Proximity Switch Thermal Switch Wear Indicator Tach Machining Thru-Shaft NEMA 2 Thru-Shaft NEMA 2	M3 M4 M14 M15 M16 M39 M42 M19 M20 M36 M1 M2 M18 M27 M7 M7 M7 M19 M20	52 55 55 59 59 56 56 52 52 55 57 53 56 56
Special Finish or Material Special Housing Switches Tach Mounting	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Split Housing Electrical Release Indicator Electrical Release Indicator Proximity Switch Thermal Switch Wear Indicator Tach Machining Thru-Shaft NEMA 2 Thru-Shaft NEMA 2	M3 M4 M14 M15 M16 M39 M42 M19 M20 M36 M1 M2 M18 M27 M7 M7 M7 M19 M20 M3	52 55 55 59 59 56 56 52 55 57 53 56 56 52
Special Finish or Material Special Housing Switches Tach Mounting Torque	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Split Housing Electrical Release Indicator Electrical Release Indicator Proximity Switch Thermal Switch Wear Indicator Tach Machining Thru-Shaft NEMA 2 Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Brass Pressure Plate Brass Stationary Disc Special Derating of Torque	M3 M4 M14 M15 M16 M39 M42 M19 M20 M36 M1 M2 M18 M27 M7 M7 M7 M7 M19 M20 M3 M3 M4	52 55 55 59 59 56 56 52 55 57 53 56 56 52 52 52 52 52 58
Special Finish or Material Special Housing Switches Tach Mounting Torque Derating	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Split Housing Electrical Release Indicator Electrical Release Indicator Proximity Switch Thermal Switch Wear Indicator Tach Machining Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Brass Pressure Plate Brass Stationary Disc Special Derating of Torque Conduit Box with Terminal Strip	M3 M4 M14 M15 M16 M39 M42 M19 M20 M36 M1 M2 M18 M27 M7 M7 M7 M19 M20 M3 M4 M34 M8	52 55 55 59 59 56 56 59 52 52 55 57 53 56 56 52 52 52 52 58 53
Special Finish or Material Special Housing Switches Tach Mounting Torque	Brass Pressure Plate Brass Stationary Disc Special Paint Stainless Self-Adjust Stainless Steel Hardware Corrosion-Resistant Endplate Stainless Steel Hub Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Split Housing Electrical Release Indicator Electrical Release Indicator Proximity Switch Thermal Switch Wear Indicator Tach Machining Thru-Shaft NEMA 2 Thru-Shaft NEMA 2 Thru-Shaft NEMA 4 and 4X Brass Pressure Plate Brass Stationary Disc Special Derating of Torque	M3 M4 M14 M15 M16 M39 M42 M19 M20 M36 M1 M2 M18 M27 M7 M7 M7 M19 M20 M3 M3 M4 M34	52 55 55 59 59 56 56 52 55 57 53 56 56 52 52 52 52 58


Electrical Release Indicator Switch

This switch is used to indicate when the brake is in a released, non-holding position. This mechanism utilizes a mechanical limit switch.

Series	List Price Adder
56,X00 & 65,300	\$450.00
81,000; 82,000; 87,X00	450.00
86,X00	900.00

87,000 Series (also representative of . 81,000; 82,000 and 86,000 Series)



Not available on 56,800 or 87,800 Series Brakes.

Electrical Release Indicator Proximity Switch

Same function as the switch in M1 above; except, M2 uses an electronic proximity sensor.

Series	List Price Adder
81,000 82,000 87,X00	\$1375.00
86,X00	2750.00

Not available on 56,800 or 87,800 Series Brakes.

М3 **Brass Pressure Plate**

Typically used in marine applications or in applications where the potential for sparks need to be eliminated. Brass can also be used to reduce torque.

Series	List Price Adder
56,X00	See M4
65,X00	\$250.00
81,000; 82,000	800.00
86,X00	1050.00
87,X00	600.00

Brass Stationary Discs

Used with brass pressure plate (List per disc).

Series	List Price Adder
56,X00	\$250.00
65,X00	250.00
87,X00	450.00
81,000; 82,000	600.00
86,X00	750.00

A drain plug is tapped into the bottom of the housing to let moisture escape. This option is only available on brakes with cast aluminum or cast iron housings.

Series	List Price Adder
56,X00	\$380.00
65,X00	500.00
81,000 82,000 86,X00 87,X00	380.00

M6 Class H Insulation

Brake is provided with an epoxy encapsulated coil, rated for NEMA Class H designation.

These Class H coils are standard on hazardous location brakes.

Series	List Price Adder
56,X00	\$145.00
87,X00	175.00
81,000 82,000	285.00
86,X00	570.00

M7 Housing Machining for Encoder/Tach Mounting

Standard Machining				Close Tolerance ²			Tether Mount ³		
	Bolt Circle & Register		Bolt Circle - but no Register		Bolt Circle & Register			A Single Bolt Hole	
Series	Open ⁴ Enclosure List Price Adder	Enclosed⁵ List Price Adder	Open ^₄ Enclosure List Price Adder	Enclosed⁵ List Price Adder	Open ⁴ Enclosure List Price Adder	Enclosed⁵ List Price Adder	Maximum Thru-Shaft Dia. (inch)	Open ⁴ Enclosure List Price Adder	Enclosed⁵ List Price Adder
56,X00 (except N/A for 56,800)	N/A	N/A	N/A	N/A	N/A	N/A		\$350	\$460
87,000 - 87,100	\$700	\$1,200	\$80	\$350	\$2,450	\$2,750	1.63	\$240	\$350
87,M00 - 87,500 - 87,600	N/A	\$1,200	N/A	\$350	N/A	\$2,750		N/A	\$350
81,000 - 82,000 ⁶	\$1,100	\$1,375	\$305	\$580	\$2,550	\$2,825	2.5	\$465	\$740
86,000	\$1,100	\$1,375	\$380	\$780	\$2,550	\$2,950		\$540	\$940

¹Standard Machining: The housing is machined for a thru shaft, and to allow for an encoder or tach to be mounted. This option is only available on brakes with cast aluminum or cast iron housings. Consult factory for availability.

²Close tolerance: The housing and endplate are assembled and dowel pinned together - then machined as a matched set for a through shaft and encoder mounting. This option is only available on brakes with cast aluminum or cast iron housings. This option is recommended for Series 81,000; 82,000; and 86,X00 due to the long distance between the motor and encoder.

³**Tether Mount:** The housing is machined for a through shaft, and a single tapped hole for a bolt to secure a tether arm. (56,X has a through hole and tach-welded nut on inside of housing, instead of a tapped hole).

⁴Referred to on the product pages in the catalog as IP23

⁵Referred to on the product pages as IP54/55 (these enclosure ratings no longer apply when the housing is machined for this modification - the customer is responsible for meeting any specific enclosure rating when assembling the encoder.

⁶M7 Modification for Series 81,000 and 82,000 will also require the M12 Modification; the side manual release.

M8 Conduit Box with Terminal Strip

A terminal strip is located inside the conduit box. It allows for easy connection and identification of lead wires.

Series	List Price Adder
All series except hazardous location (not available for the 48,100 series)	\$300.00 (IP 23) \$600.00 (IP 54)
All hazardous location brakes	\$600.00

For DC voltage applications. Operates with an electronic DC switch module.

Series	List Price Adder	Additional Adder for Non-Standard Voltage
56,X00	\$ 300.00	\$ 250.00
87,X00	570.00	250.00
81,000	1050.00	250.00
82,000	1565.00	250.00
86,X00	2625.00	500.00

For standard voltage listing, see the ordering information section for the specific brake.

Not available on Hazardous Location Brakes.

M10 Nameplates

To order new brake nameplates, the serial number of the brake is required. A loose nameplate shipped from Stearns Division without being attached to a brake must have all agency markings removed (UL, CSA, etc.). In order to have a brake renameplated with the appropriate agency markings, it must be returned to Stearns Division for product verification.

List Price:	First Nameplate	\$150.00
Net Price:	Additional Mylar Nameplates	1.50
	Additional Metal Nameplates	4.00

Nonstandard Hub or Keyway

For standard bore diameter and keyway specifications, see specific brake selection page. For taper bores, consult factory for pricing.

	List Price Adder					
Description	48,100	56,X00	65,X00	81,000 82,000 86,000	87,000 87,100 87,800	87,700
All Quantities and Enclosures	\$225.00	225.00	325.00	600.00	250.00	250.00

M12 Side Manual Release

Side release not available on the 1-086-000

Sheet Metal Housing (IP 23 Only)	List Price Adder
56,000; 56,400; 56,500	\$50.00
87,000; 87,100	\$50.00
Cast Iron Housing	List Price Adder
87,000 IP 23	\$385.00 includes casti iron housing adder of \$110
87,000 IP 54	\$275.00
81,000 82,000	\$350.00

M13 Space Heater (115 or 230 Volt Only)

A space heater cartridge is used to prevent moisture build-up inside the brake housing.

Series	Wattage	List Price Adder
56,X00*	15	\$210.00
81,000; 82,000; 86,X00	50 and 75	275.00
87,X00*	25 to 30	225.00
Hazardous Duty Brakes	25 to 50	750.00

*Not available on 56,800 or 87,800 Series Brakes

87,000 Series (also representative of 81,000; 82,000 & 86,000 Series)

M14 Special Paint

Based on a zinc chromate finish, both inside and outside of brake. Consult factory for actual application.

Series	List Price Adder
56,X00	\$210.00
65,X00	300.00
81,000, 82,000, 86,X00	550.00
87,000	525.00

M15 Stainless Steel Self-Adjust Mechanism

For severe duty applications. This option includes a stainless steel pinion and plated wrap spring in the auto-adjust mechanism. It is only available on the 81,000; 82,000; 86,000 and 87,000 Series Brakes

Series	List Price Adder
81,000; 82,000; 87,000	\$350.00
86,X00	\$700.00

M16 Stainless Steel Hardware

All external hardware is provided in stainless steel.

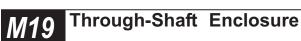
Series	List Price Adder
48,100	\$125.00
56,X00, 87,X00	\$150.00
81,000, 82,000 86,000	\$275.00

M17 Terminal Strip

A terminal strip is located in the inside of the brake, on the support plate. It allows for easy connection and identification of lead wires.

Series	List Price Adder
ALL	\$150.00

56,000 Series


87,000 Series (also representative of 81,000; 82,000 & 86,000 Series)

M18 Thermostat (thermal switch)

This switch is used to indicate when a brake is overheating. Thermostats are standard in 8X,300 and 65,X00 Series. This option is for NON-UL brakes only.

Series	Switch Operation Specificatons	List Price Adder
87,X00	Normally Closed: Opens at 295°F, Closes at 255°F	\$400.00
81,000, 82,000 86,X00	Normally Closed: Opens at 210°F, Closes at 180°F	400.00
56,X00	Normally Closed: Opens at 195°F, Closes at 175°F	400.00

This configuration allows for the motor shaft to extend beyond the housing of the brake.

Series	List Price Adder
56,000, 56,400	N/C
56,100, 56,200	\$110.00
56,600	110.00
81,000, 82,000	225.00
86,000	300.00
87,000, 87,100 sheet metal	N/C*
87,000, 87,100 with cast iron housing	225.00 (adder for cast iron housing is \$210.00 additional)

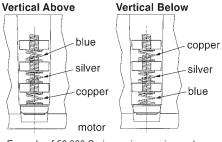
*Up to 1-5/16".

Above 1-5/16", add \$80.00.

M20 Through-Shaft Cast Iron Enclosure with Lip Seal

This configuration allows the motor shaft to extend beyond the housing of the brake with a bushing to use with a housing lip seal.

Series	List Price Adder
56,100, 56,200 56,600	\$220.00
81,000, 82,000	500.00
86,000	700.00
87,000, 87,100	300.00



M21 Vertical Mounting for 56,000 Series & 65,300 Series

The 56,000 20 and 25 lb-ft Series Brakes are shipped with spring kits. Vertical modification at 15° from horizontal. Read installation and service instructions for details on its use.

Description	List Price Adder
Factory assembly for three disc configuration.	\$20.00

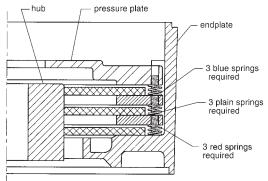
Example of 56,000 Series spring requirements for vertical above and below mounting.

M23

Vertical Mounting for 87,X00 Series

For factory modification to vertical above or below application. Vertical modification at 15° from horizontal.

Series 87,000 & 87,100

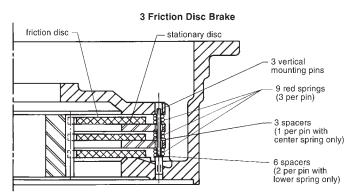

Torque Value (lb-ft)	IP 23 & IP 54 steel hsg Above	IP 23 & IP 54 steel hsg Below	IP 54/55 cast iron Above	IP 54/55 cast iron Below
6, 10, 15, 25 & 35	\$95.00	no mod req'd	\$370.00*	no mod req'd
50 & 75	\$105.00	\$105.00	\$380.00*	\$105.00
105	\$135.00	\$135.00	\$410.00*	\$135.00

*Includes adder for side manual release

Series 87,300; 87,800; 87,700

Torque Value (Ib-ft)	Vertical Above	Vertical Below
6, 10, 15, 25 & 35	\$95.00	no mod req'd
50 & 75	\$105.00	\$105.00
105	\$135.00	\$135.00

3 Friction Disc Brake


Example of 87,000 Series spring requirements for vertical above mounting.

M24 Vertical Mounting for 81,000; 82,000 and 86,000 Series

These brakes require factory modifications for vertical applications. Vertical modification at 15° from horizontal.

Series	Torque Value (lb-ft)	IP 23 Above & Below	IP 54 Above	IP 54 Below
81,000 & 82,X00	125 & 175	\$250.00	\$575.00*	\$250.00
81,000 & 82,X00	230	300.00	650.00*	300.00
82,X00	330	300.00	650.00*	300.00
82,X00	440	500.00	850.00*	500.00
86,000	500 & 750	750.00	750.00*	750.00

*Includes adder for side manual release

Example of 81,000 Series pin, spring and spacer requirements for vertical above mounting.

M25 Voltage Non-Standard (AC)

For standard voltage listing, see the ordering information section for the specific brake.

Series	List Price Adder
48,100	\$165.00
65,X00	165.00
56,000	165.00
81,000; 82,X00	200.00
86,X00	400.00
87,X00	175.00

M27 Wear Indicator (Friction Disc) Switch with Leads

A mechanical switch is installed to indicate when the friction disc requires replacement.

Series	List Price Adder
81,000; 82,X00	\$225.00
86,000	225.00
87,X00*	225.00
87,X00^	225.00

*N/A on 87,800

87,000 Assembly

87,000 Assembly

M29 Special Shaft-Coupler Brake and Foot Mount Brake

Any non-standard input or output shaft on a 56,700, 87,200 or 87,700 Series Brake.

Series	List Price Adder
56,700	\$325.00
87,200; 87,700	325.00

//30 Taper-Lock Hubs

For use in severe duty applications and reversing application to secure the brake hub to the motor shaft.

Series	Series	List Price Adder
87,000;	10 to 35 lb-ft	\$200.00
87,100 IP 23 only	50 to 75 lb-ft	225.00
11 20 Only	105 lb-ft	250.00
81,000	125 & 175 lb-ft	225.00
81,000	230 lb-ft	325.00
	125 & 175 lb-ft	375.00
82,000	230 & 330 lb-ft	550.00
	440 lb-ft	675.00

M31 Special Length Lead Wires

Up	Series	List Price Adder
to 5'	All	\$65.00

Over	Series	List Price Adder
5	All	\$130.00

M32 Non-Maintained (Deadman) Manual Release

The brake is mechanically released while the release is pulled into a release position. Once released, the brake sets.

Series*	List Price Adder
56,200, 56,700, 56,800 & 56,900	\$110.00
56,000, 56,400 & 56,500	185.00
81,000; 82,000 & 87,000	125.00
86.000	250.00

M33 Metric Machining Including Cast Iron Endplate

Stearns SAB's can be used with metric motor frames. The following table indicates standard frame capabilities for an IEC B14 Face mount.

Series	IEC Frame Sizes	List Price Adder
	B14 flange in sizes 80; 90 & 100 B5 flange in sizes D63 & D71	\$340.00
56,500	B14 flange in sizes 112; 132 & 160 B5 flange in sizes D71; D80; D90; D100 & D112	\$340.00
87,000	B14 flange in sizes 112; 132 & 160 B5 flange in sizes D71; D80; D90; D100 & D112	\$340.00

M34 Derating of Torque

Stearns industrial SAB's can be custom built to meet your specific torque requirements.

Series	List Price Adder	Derate To
56,500	\$315.00	6 lb-ft
87,100	315.00	20 or 30 lb-ft
81,000 & 82,000	460.00	To be approved with application engineering

M35 Special Internal Lead Wire Hole with Bushing

Any non-standard, internal lead wire hole in the endplate.

Series	List Price Adder
All brakes except hazardous location brakes	\$175.00

M36 Housing Split							
SAB's can be provided with a split housing.		Series					
				0			E.
				00			
		87,000; 87,100 sheet metal	\$200.0	0			
		87,000; 87,100 cast iron gasketed	\$250.0	0		-	
that t		nanual release requ sing be removed be n be released by ha	fore	Serie	es		List Price Adder
		ous location brakes		87,0XX; 8 82,0XX; 8			N/C
M38 Motor Gasket The brake is		provided with an				List Pric	20
	additional C-Face gasket to be p between the brake and motor.		laced	Series	*	Adder	
between the		orake and motor.		81,000; 82 86,000		\$100.00)
				56,X00 & 8	37,000	75.00	
				*N/A for hazar	dous loc	ation brake	es

M39 Corrosion-Resistant Endplate

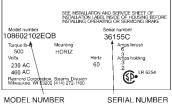
Rust preventative treatment applied to brake endplate.

Series	List Price Adder
56,200, 56,400, 56,500, 56,800 & 65,300	\$425.00
81,000; 82,X00 & 86,000	575.00
87,X00	475.00

M40 Special Milling: Flat Bottom on Housing & Endplate

This modification is provided in the event the flange between the endplate and housing interfere with the mounting configuration.

Series	List Price Adder
81,000; 82,000 & 86,000	\$650.00



M41 Brass Nameplate with Special Engraving

Brass nameplates offer greater durability in outdoor applications.

Series	List Price Adder
81,000; 82,000 & 86,000	\$75.00

Stearns[®]

MODEL NUMBER will appear on brake nameplate.

Stainless steel splined hubs are available for extreme outdoor applications, to prevent corrosion on the disc and hub interface.

Series	List Price Adder
81,000; 82,000 & 86,000	\$1060.00
87,000	800.00

Viton[®] Gasket

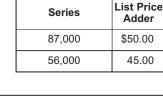
Gaskets and o-rings in brakes can be provided in Viton® (flourocarbon) material, in place of the standard neoprene. However, the V-wiper steel-backed seals that are used on pull rod manual releases are not available in Viton[®] and remain as neoprene.

Viton[®] is a registered trademark name of DuPont.

Series	List Price Adder
81,000; 82,000; 86,000	\$1,060.00
87,000*	\$1,125.00
56,000	\$950.00

*Viton® gaskets and o-rings are standard for 87,X00 series, except for hazardous location brakes where Viton® seals are N/A.

**Except series 56,200; 56,700; & 56,900 - where Viton gaskets are standard.


Special Friction Disc (per Disc) Any non-standard friction disc in a brake.

Cost is per disc.

Non-standard discs include: hi-inertia friction discs and heavy duty friction discs. Does not include carrier ring friction discs (see M46 and M47).

Splined Hub and Friction Disc

Standard on most models. Used for severe duty and reversing applications.

List Price

Adder

No Charge

Series

87,300

Series	Torque (Ib-ft)	List Price Adder
87,X00*	6-35 lb-ft	190.00
07,700	50 & 75 lb-ft	290.00
	105 lb-ft	390.00

* Spline is standard on this series. Adder is for pre-revision 24-tooth spline.

The friction material is bonded to a steel or zinc/aluminum alloy ring.

This is used for severe duty applications and applications where people are being moved.

Series	Carrier ring material	List Price Adder (per disc)
Horizontal Use Only		
56,X00* (not available on 56,800 series)) Aluminum	\$420.00
81,000	Steel	700.00
82,000	Steel	700.00
Horizontal or Vertical U	lse	
87,X00** (not available on 87,300 or 87,800 series	Zinc aluminum alloy	550.00

Carrier Ring Friction Disc (Bronze)

The friction material is bonded to a bronze ring. This is used for severe duty applications and applications where people are being moved.

Horizontal applications only

** Only available with pre-revision design, 24-tooth splined hub, which is included in this price

Series (per disc) 81,000 N/A 82,000 \$1050.00 86,000 1250.00 87,X00** 6-35 lb-ft 925.00 50 & 75 lb-ft 1850.00 105 lb-ft 2775.00

List Price Adder

1,08X,000 Series Manual Adjust Mechanism

Excellent for holding applications when disc wear is not a concern. (Not available on hazardous location brakes.)

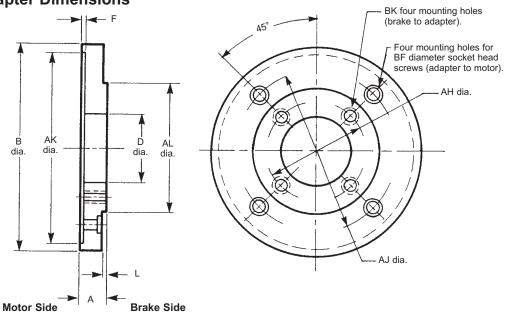
Series	List Price Adder
87,000	Subtract \$50 List
81,000 82,000 86,000	No Charge

Encoders

Internally mounted encoders are available in some series brakes, including some hazardous location brakes. See pages 49-50 for series availability and additional information.

Maximum Encoder Diameter (in.)						
1-056	N/A					
1-087-E00	2.0"					
1-081 & 1-082	2.5"					
1-086	3.5"					

Technical Data

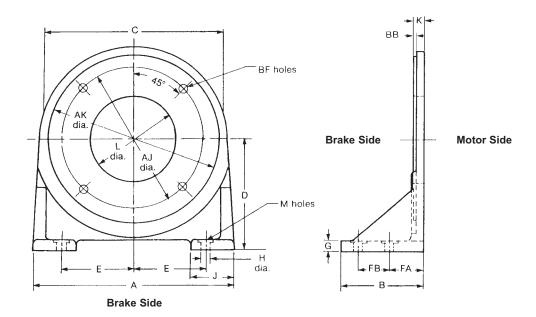

SAB Motor Frame Adapter Dimensions

Selection

To select an adapter for a specific brake, refer to the *Motor Frame Adapter* Tables as shown in the brake series sections of this Catalog. After selecting the adapter stock number, refer to the Tables below for dimensions.

All adapters are constructed with an opening for internal lead wire connection, corresponding to the NEMA standard location for the motor frame size.

Screws for mounting adapter to motor must be provided by customer. Socket head cap screws are supplied for mounting brake to adapter.



Dimensions for estimating only. For installation purposes, request certified prints.

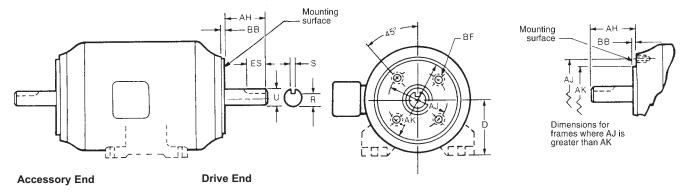
Brake	Torque	Adapter Stock						nensions in Insions in I		rs)				Add'l Shaft	List	Discount
Series	(lb-ft)	Number	Α	AH	AJ	AK	AL	В	BF	BK Hole	D	F	L	Length Req'd	Price	Symbol
56,000	1.5 - 6	5-55-5041-00				<u>8.500</u>	4.497								\$700	B4
65,300*		5-55-5046-00	1.25 (31.75)	5.88 (149.22)	7.25 (184.15)	8.502 (215.900)	4.500 (114.325)	9.00 (228.60)	.50 (12.70)	3/8 - 16 x 1/2 deep	4.00 (101.60)	.19 (4.76)	.12 (3.18)	.94 (23.88)	¢	
56,000 and 56,800*	10 - 25	5-55-5043-00	(01.10)	(110.22)	(101.10)	(215.951)	(114.275)	(220.00)	(12.70)		(101.00)	(1.10)	(0.10)	(20.00)	\$700	B4
87,000 and 87,800*	6 - 105	5-55-7046-00	1.06 (26.99)		11.00 (279.40)	<u>12.501</u> 12.504 <u>(317.525)</u>	<u>8.499</u> 8.497 <u>(215.875)</u>	13.00 (330.20)	.62 (15.88)		4.12 (104.78)		.38 (9.52)	.87 (22.10)	\$875	B2
87,300		5-55-7054-00		7.25 (184.15)		(317.602)	(215.849)			1/2 - 13 through		.19 (4.76)				
87,000 and 87,800*	6 - 105	5-55-7055-00	1.00 (25.40)	(104.10)	9.00 (228.60)	<u>10.500</u> 10.502 <u>(266.700)</u>	<u>8.499</u> 8.497 <u>(215.875)</u>	11.00 (279.40)	**		6.25 (158.75)	(4.70)	.25 (6.35)	.81 (20.57)	\$450	B2
87,300*		5-55-7045-00				(266.751)	(215.849)									
87,000, 87,800* and 87,300*	6 - 105	5-55-7043-00	.75 (19.05)	7.25 (184.15)	5.88 (149.35)	<u>4.502</u> 4.507 (<u>114.35)</u> (114.48)	8.499 8.497 (215.875) (215.849)	8.75 (222.25)	.62 (15.75)	1/2 - 13 through	4.00 (101.60)	.19 <i>(4</i> .76)	.25 (6.35)	.56 (14.23)	\$1,300	B2
81,000	125 - 130	5-55-2045-00	1.06 (26.99)	11.00 (279.40)	14.00 (355.60)	<u>16.002</u> 16.005 (406.451) (406.527)	<u>12.499</u> 12.496 (<u>317.475)</u> (317.398)	16.50 (419.10)	.62 (15.88)	5/8 - 11 through	9.75 (247.65)	.19 (4.76)	.25 (6.35)	.87 (22.10)	\$1,875	C1
81,000	125 -	5-55-2041-00	1.12	11.00	7.25 (184.15)	<u>8.500</u> 8.502 (<u>215.900)</u> (215.951)	<u>12.499</u> 12.496	<u>12.499</u> 12.496	.50	5/8 -11 through	6.00 (152.40)	.19		.93 (23.62)	\$1.325	C1
81,000	230	5-55-2043-00	(28.58)	(279.40)	9.00 (228.60)	<u>10.500</u> 10.502 (<u>266.700)</u> (266.751)	<u>(317.475)</u> (317.398)	<u>(317.475)</u> (317.398)	(12.70)	5/6 - 11 through	7.75 (196.85)	(4.76)		.93 (23.62)	φ1,325	C1
82,000 and 82,300*		5-55-2046-00	1.94 (49.21)		14.00 (355.60)	<u>16.002</u> 16.005 (406.451) (406.527)		16.50 (419.10)	.62 (15.88)	5/8 - 11 x 1 deep	9.50 (241.30)			1.75 (44.45)	\$1,875	C1
82,000 and 82,300*	125 - 550	5-55-2042-00	1.38 (34.92)	11.00 (279.40)	7.25 (184.15)	8.500 8.502 (215.900) (215.951)	<u>12.499</u> 12.496 (<u>317.475)</u> (317.398)	13.25 (336.55)	.50	5/8 -11 through	6.00 (152.40)	.19 (4.76)	.25 (6.35)	1.19 <i>(30.23)</i>	\$1,325	C1
82,000 and 82,300*		5-55-2044	1.38 (34.92)		9.00 (228.60)	<u>10.500</u> 10.502 (<u>266.700)</u> (266.751)		13.25 (336.55)	(12.70)	5/6 - 11 uirougn	7.75 (196.85)			1.19 (30.23)	\$2,075	C1
86,000	500 - 1000	5-55-6041-00	1.56 (38.69)	14.00 (355.60)	11.00 (379.40)	<u>12.500</u> 12.504 (<u>317.500)</u> (317.602)	<u>16.000</u> 15.995 (406.400) (406.273)	16.19 (441.16)	.62 (15.88)	5/8 - 11 x 3/4 deep	8.62 (219.08)	.19 (4.76)	.25 (6.35)	1.37 (34.80)	\$2,800	C1

* 1/2-13 flat head screws are supplied with adapter.

** When adding an adapter to a hazardous location brake, refer to the "mounting requirements" on the product page for the recommended brake series for accommodating adapters.

Kits include the foot mounting bracket and hardware to fit the BF mounting holes.

Brake Series	Torque	Foot Mounting							(in Incl Millim								Wgt.					
Series	Torque	Kit Number	А	AJ	AK	в	вв		BF	с	D	Е	FA	FB	G	н	J	к	L	м	lbs.	Price	Discount		
								No.	Thd.											No.			Di		
56,000	1.5-25	5-55-5023-00	7.00 (177.80)	5.88 (149.22)	$\frac{\frac{4.499}{4.498}}{\left(\frac{114.275}{114.249}\right)}$	2.38 (60.32)	.12 (3.18)	2	3/8-16	6.50 (165.10)	3.50 (88.90)	2.88 (73.02)	1.50 (38.10)	-	.38 (9.52)	.41 (10.32)	1.50 (38.10)	.50 (12.70)	2.50 (63.50)	2	4.5	\$500.00	B4		
87,000	6-105	5-55-7021-00	8.62 (219.08)	7.25 (184.15)	$\frac{\frac{8.499}{8.498}}{\left(\frac{215.875}{215.849}\right)}$	3.00 (76.20)	.25 (6.35)	4	1/2-13	8.62 (218.95)	5.00 (127.00)	3.56 (90.49)	2.00 (50.80)	-	.38 (9.52)	.53 (13.49)	1.62 (41.28)	.56 (14.29)	5.75 (146.05	2	7	575.00	B2		
81,000	125-230	5-55-2022-00	15.50	11.00	<u>12.499</u> 12.498 (317.475)	7.00	.25	4	5/8-11	13.25	8.50	6.88	2.00	4.00	.62	.69	3.00	.88	9.00	4	40	1,325.00	C1		
82,000	125-550	5-55-2022-00	(393.70)	(279.40)	(317.449)	(177.80)	(6.35)	4	5/0-11	(336.55)	(215.90)	(174.62)	(50.80)	(101.60)	(15.88)	(17.46)	(76.20)	(22.22)	(228.60)	4	40	1,525.00	01		
86,000	500- 1000	5-55-6021-00	18.25 (463.55)	14.00 (355.60)	$ \begin{pmatrix} \frac{16.000}{15.995} \\ \left(\frac{406.400}{406.273} \right) $	8.00 (203.20)	.22 (5.56)	4	5/8-11	17.00 (431.80)	10.88 (276.22)	6.38 (161.92)	3.38 (85.72)	3.00 (76.20)	1.00 (25.40)	.81 (20.64)	4.12 (104.78)	1.22 (30.96)	8.50 (215.90)	4	75	3,900.00	C1		


Dimensions for estimating only. For installation purposes, request certified prints.

Dimensions for C-Face Brake Motor Systems

Brakes Externally Wired to Motor

C-face motor with double shaft extension.

Stearns Disc Brakes are designed to mount on standard C-face motors having the same dimensions and tolerances on the accessory end as on the drive end. They also mount on foot mounting brackets and machine mounting faces having the same mounting dimensions and tolerances. Some motor accessory end C-face may differ from the drive end.

Drive End Dimensions (Inches)

					BF Hole					Keyseat		Base to
Frame Designation	AJ	AK	BB Min.			Bolt	U	AH		Neyseat		Centerline
			WIIII.	Number	Tap Size	Penetration Allowance			R	ES Min.	S	D
42C	3.750	3.000		4	1/4-20		0.375	1.312	0.328		flat	2.62
48C	3.750	3.000		4	1/4-20		0.500	1.69	0.453		flat	3.00
56C	5.875	4.500	0.16	4	3/8-16		0.625	2.06	0.517	1.41	0.188	3.50
143TC and 145TC	5.875	4.500		4	3/8-16	0.56	0.875	2.12	0.771	1.41	0.188	3.50
182TC and 184TC	7.250			4	1/2-13	0.75	1.125	2.62	0.986	1.78	0.250	4.50
182TCH and 184TCH	5.875	4.500	0.16	4	3/8-16	0.56	1.125	2.62	0.986	1.78	0.250	4.50
213TC and 215TC	7.250	8.500	0.25	4	1/2-13	0.75	1.375	3.12	1.201	2.41	0.312	5.25
254TC and 256TC	7.250			4	1/2-13	0.75	1.625	3.75	1.416	2.91	0.375	6.25
284TC and 286TC		10.500		4	1/2-13	0.75	1.875	4.38	1.591	3.28	0.500	7.00
284TSC and 286TSC	9.000	10.500	0.25	4	1/2-13	0.75	1.625	3.00	1.416	1.91	0.375	7.00
324TC and 326TC	11.000	12.500	0.25	4	5/8-11	0.94	2.125	5.00	1.845	3.91	0.500	8.00
324TSC and 326TSC		12.500		4	5/8-11	0.94	1.875	3.50	1.591	2.03	0.500	8.00
364TC and 365TC		12.500		8	5/8-11	0.94	2.375	5.62	2.021	4.28	0.625	9.00
364TSC and 365TSC	11.000	12.500	0.25	8	5/8-11	0.94	1.875	3.50	1.591	2.03	0.500	9.00
404TC and 405TC	11.000	12.500	0.25	8	5/8-11	0.94	2.875	7.00	2.450	5.65	0.750	10.00
404TSC and 405TSC		12.500		8	5/8-11	0.94	2.125	4.00	1.845	2.78	0.500	10.00
444TC and 445TC		16.000		8	5/8-11	0.94	3.375	8.25	2.880	6.91	0.875	11.00
444TSC and 445TSC	14.000	16.000	0.25	8	5/8-11	0.94	2.375	4.50	2.021	3.03	0.625	11.00
500 Frame Series	14.500	16.500	0.25	4	5/8-11	0.94						12.50

Tolerances (Inches)

AK Dimension, Face Runout, Permissible Eccentricity of Mounting Rabbet

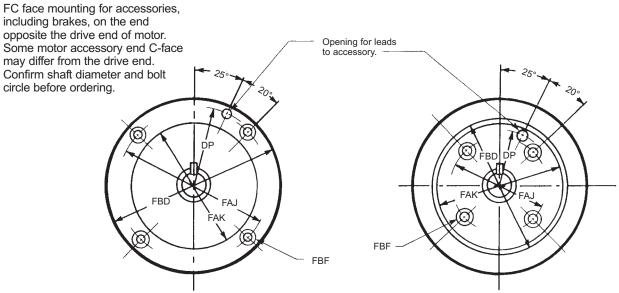
AK		nce on nension	Maximum Face	Maximum Permissible Eccentricity		
Dimension	Plus	Minus	Runout	of Mounting Rabbet		
Less than 12 12 and Larger	0.000 0.000	0.003 0.005	0.004 0.007	0.004 0.007		

Width of Shaft Extension Keyseats

Width of Keyseat	Tolerances					
width of Reyseat	Plus	Minus				
0.188 to 0.750, inclusive Over 0.750 to 1.500, inclusive	0.002 0.003	0.000 0.000				

SOURCE: ANSI/NEMA Standards Publication No. MG 1-1987; Part 4 and Part 11.

Shaft Extension Diameters


Shaft Diameter	Tolerances					
	Plus	Minus				
0.2500 to 1.5000, inclusive Over 1.5000 to 6.500, inclusive	0.000 0.000	0.0005 0.001				

Shaft Runout

Shaft Diameter	Maximum Permissible Shaft Runout
0.3750 to 1.625, inclusive	0.002
Over 1.625 to 6.500, inclusive	0.003

Dimensions for C-Face AC Brake Motor System (cont.)

Accessory End

143TFC to 184TFC Frames, Inclusive

213TFC to 326TFC Frames, Inclusive

Dimensions (Inches)

				FBF Hole	•	Но	le for
FAJ	FAK	FBD Max.	Number	Top Size	Bolt	Access	ory Leads
			Number	Tap Size	Allowance	DP	Diameter
5.875	4.500	6.50	4	3/8-16	0.56	2.81	0.41
5.875	4.500	6.50	4	3/8-16	0.56	2.81	0.41
7.250	8.500	9.00	4	1/2-13	0.75	3.81	0.62
7.250	8.500	10.00	4	1/2-13	0.75	3.81	0.62
9.000	10.500	11.25	4	1/2-13	0.75	4.50	0.62
11.000	12.500	14.00	4	5/8-11	0.94	5.25	0.62
	5.875 5.875 7.250 7.250 9.000	5.875 4.500 5.875 4.500 7.250 8.500 7.250 8.500 9.000 10.500	FAJ FAK Max. 5.875 4.500 6.50 5.875 4.500 6.50 7.250 8.500 9.00 7.250 8.500 10.00 9.000 10.500 11.25	FAJ FAK Max. Number 5.875 4.500 6.50 4 5.875 4.500 6.50 4 7.250 8.500 9.00 4 7.250 8.500 10.00 4 9.000 10.500 11.25 4	FAJ FAK FBD Max. Number Tap Size 5.875 4.500 6.50 4 3/8-16 5.875 4.500 6.50 4 3/8-16 7.250 8.500 9.00 4 1/2-13 9.000 10.500 11.25 4 1/2-13	FAJ FAK Max. Number Tap Size Penetration Allowance 5.875 4.500 6.50 4 3/8-16 0.56 5.875 4.500 6.50 4 3/8-16 0.56 7.250 8.500 9.00 4 1/2-13 0.75 7.250 8.500 10.00 4 1/2-13 0.75 9.000 10.500 11.25 4 1/2-13 0.75	FAJ FAK FBD Max. Number Tap Size Bolt Penetration Allowance Access 5.875 4.500 6.50 4 3/8-16 0.56 2.81 5.875 4.500 6.50 4 3/8-16 0.56 2.81 7.250 8.500 9.00 4 1/2-13 0.75 3.81 7.250 8.500 10.00 4 1/2-13 0.75 3.81 9.000 10.500 11.25 4 1/2-13 0.75 4.50

NOTE: Standards have not been developed for the shaft extenison diameter and length, and keyseat dimensions.

Tolerances* (Inches)

FAK Dimension, Face Runout, Permissible Eccentricity of Mounting Rabbet

FAK		nce on nension	Maximum Face	Maximum Permissible Eccentricity		
Dimension	Plus	Minus	Runout	of Mounting Rabbet		
Less than 12 12 and Larger	0.000 0.000	0.003 0.005	0.004 0.007	0.004 0.007		

* Tolerance requirement on 56,X00 and 87,000 Series Brake kits is .015 T.I.R. (total indicated runout shaft to motor register face).

Stearns Recommended Minimum Shaft Diameter by Torque

Minimum recommended shaft size considers a keyed C1045 steel shaft under *dynamic* use in a typical spring set brake application.

Torque ft-lb	Minimum Shaft (inches)
0.50	0.250
0.75	0.250
1.5	0.375
3	0.500
6	0.500
10	0.625
15	0.750
25	0.875
35	1.000
50	1.125

Torque ft-lb	Minimum Shaft (inches)
75	1.250
105	1.375
125	1.375
175	1.625
230	1.750
330	2.000
440	2.125
500	2.375
750	2.500
1000	2.750

Shaft	Runout
Snan	Runoul

Shaft Diameter	Maximum Permissible Shaft Runout
0.3750 to 1.625, inclusive	0.002
Over 1.625 to 6.500, inclusive	0.003

SOURCE: ANSI/NEMA Standards Publication No. MG 1-1987; Part 4 and Part 11.

Torque

Nm

4 Nm

8 Nm

16 Nm

32 Nm

60 Nm

80 Nm

150 Nm

240 Nm

400 Nm

Minimum

Shaft

(mm)

ø10 mm

ø13 mm

ø16 mm

ø20 mm

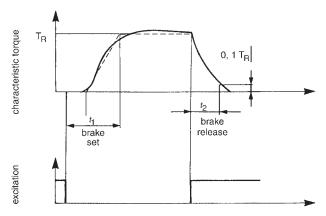
ø25 mm

ø28 mm

ø34 mm

ø39 mm

ø47 mm


Set and Release Times

The models listed below were tested for typical set and release times. Times listed below are defined as follows:

T1 = Total set time to 80% of rated static torque

T2 = Release time, measured as the time from when the power is applied to the brake to the time that the solenoid plunger or armature is fully seated.

NOTE: Times will vary with the motor used, and brakes tested with factory-set air gap. The times shown should be used as a guide only.

SAB T1/T2 Time in Milliseconds

Series	Static Torque Ib-ft	Coil Size	T1 AC	T2 AC
56,000	1 ¹ /2 – 25	K4, K4, K4+, M4+	25	14
87,000	10,15, 25,50	5&6	42	20
87,000	35,75,105	8	48	20
81,000 82,000	All	9	56	27

Brake and motor are switched separately. All brakes tested in horizontal position. Coil is energized for >24 hours before testing. Ambient temperature 70°F at time of test.

AAB Series 333 Times in Milliseconds

Size	Applied Voltage/Type of Switching	T1	T2
	DC side switching	23	35
72	230 Vac/ac side switching/full wave	103	39
	460 Vac/ac side switching/half wave	98	34
	DC side switching	19	73
	230 Vac/ac side switching/full wave	113	72
90	460 Vac/ac side switching/half wave	114	73
	230 Vac connected across motor full wave	357	72
	230 Vac connected across motor /quickset	42	72
	DC side switching	155	39
112	230 Vac/ac side switching/full wave	547	43
	460 Vac/ac side switching/half wave	501	54
	DC side switching	119	100
132	230 Vac/ac side switching/full wave	833	101
	460 Vac/ac side switching/half wave	803	106
	DC side switching	185	186
	230 Vac/ac side switching/full wave	999	192
	460 Vac/ac side switching/half wave	1007	209
145	145 230 Vac connected across motor full wave 230 Vac connected across motor /quickset		192
			192
	460 Vac/ac side switching/half wave/With air gap shim	629	223
	DC side switching	129	163
170	230 Vac/ac side switching/full wave	1130	174
	460 Vac/ac side switching/half wave	1140	175
	DC side switching	96	263
196	230 Vac/ac side switching/full wave	920	264
	460 Vac/ac side switching/half wave	957	274
	DC side switching	131	264
	230 Vac/ac side switching/full wave	1299	236
	460 Vac/ac side switching/half wave	1303	276
230	Tor-Ac 230 Vac/ac side switching/full wave	169	295
	Tor-Ac 230 Vac/ac side switching/full wave/ With air gap shim	122	327
	230 Vac connected across motor quickset/quickrelease/with air gap shim	122	145
	DC side switching	182	388
278	230 Vac/ac side switching/full wave	1807	389
	460 Vac/ac side switching/half wave	1689	366

AAB Series 310/311/320/321 Times in Milliseconds

Series	310 DC Side Switching					
Size	1.79	2.0	2.87	3.35	4.25	5.0
T1	3	6	9	14	13	22
T2	20	43	48	110	120	195
Series		31	11 DC Sid	e Switch	ning	
Size	3.38	4.75	5.0			
T1	43	48	96			
T2	12	74	35			
Series		32	20 DC Sid	e Switch	ning	
Size	1.2	1.8	2.0	2.8		
T1	14	43	16	27		
T2	24	26	35	34		
Series	320	Full wa	ve rectifi	er/AC Si	de Swit	ching
Size	1.2	1.8	2.0	2.8		
T1	31	97	52	78		
T2	27	29	40	42		
Series	321 DC	Side S	witching	321 AC	Side S	witching
Size	1.2	1.8	2.8	1.2	1.8	2.8
T1	13	16	20	45	77	131
T2	18	27	49	16	25	26

Conversions

English-Metric Conversion Factors

Multiply the base unit by the factor shown to obtain the desired conversion.

Measurement	Base Unit	Factor	Conversion
Length	inch, in	25.4	<i>(millimeter, mm)</i>
	(<i>millimeter, mm</i>)	.03937	inch, in
Torque	pound-feet, lb-ft	1.355818	(newton-meter, Nm)
	(newton-meter, Nm)	.73756	pound-feet, Ib-ft
	pound-inch, lb-in	.113	(newton-meter, Nm)
	(newton-meter, Nm)	8.85	pound-inch, Ib-in
	ounce-inch, oz-in	.007062	(newton-meter, Nm)
	(newton-meter, Nm)	141.611	ounce-inch, oz-in
Moment of Inertia	pound-feet squared, lb-ft ²	.042	(kilogram-meter squared, kgm ²)
	(kilogram-meter squared, kgm ²)	23.81	pound-feet squared, lb-ft ²
Kinetic Energy	foot-pound, ft-lb	1.355818	<i>(joule, J)</i>
	<i>(joule, J)</i>	.73756	foot-pound, ft-lb
Weight	pound, lb	.453592	<i>(kilogram, kg)</i>
	<i>(kilogram, kg)</i>	2.20462	pound, lb
Horsepower (English)	horsepower, hp	.7457	<i>(kilowatt, Kw)</i>
	<i>(kilowatt, kW)</i>	1.341	horsepower, hp
Thermal Capacity	horsepower-seconds per minute, hp-sec/min (watts, W)	12.42854 .08046	(watts W) horsepower-seconds per minute, hp-sec/min
Temperature	degrees Fahrenheit,°F	(°F - 32) x ⁵ /9	(degrees Celsius, °C)
	(degrees Celsius, °C)	(°C x ⁹ /5) + 32	degrees Fahrenheit, °F

English-English Conversion Factors for Thermal Capacity

Base Unit	Multiply by	To Obtain
horsepower	60.0	hp-sec/min
ft-lb/sec	.109	hp-sec/min
ft-lb/min	.0018	hp-sec/min
in-lb/sec	.009	hp-sec/min
in-lb/min	.00015	hp-sec/min

Decimal Equivalents of Fractions

Decimal (Inc	Fraction	
2-Place	3-Place	(Inches)
.02	.016	1/64
.03	.031	1/32
.05	.047	3/64
.06	.062	¹ /16
.08	.078	5/64
.09	.094	3/32
.11	.109	7/64
.12	.125	1/8
.14	.141	9/64
.16	.156	5/32
.17	.172	11/64
.19	.188	³ /16
.20	.203	13/64
.22	.219	7/32
.23	.234	15/ ₆₄
.25	.250	1/4
.27	.266	17/64
.28	.281	9/32
.30	.297	19/64
.31	.312	5/16
.33	.328	21/64
.34	.344	11/32
.36	.359	23/64
.38	.375	3/8

Decimal Equivalent (Inches)		Fraction
2-Place	3-Place	(Inches)
.39	.391	25/64
.41	.406	13/32
.42	.422	27/64
.44	.438	7/16
.45	.453	29/64
.47	.469	15/32
.48	.484	31/64
.50	.500	1/2
.52	.516	^{33/64}
.53	.531	17/ ₃₂
.55	.547	35/64
.56	.562	⁹ /16
.58	.578	37/64
.59	.594	19/32
.61	.609	39/64
.62	.625	5/8
.64	.641	41/64
.66	.656	21/32
.67	.672	43/64
.69	.688	11/16
.70	.703	45/64
.72	.719	23/32
.73	.734	47/64
.75	.750	3/4

	Decimal Equivalent (Inches)	
2-Place	3-Place	(Inches)
.77	.766	49/64
.78	.781	25/32
.80	.797	51/64
.81	.812	¹³ /16
.83	.828	53/64
.84	.844	27/32
.86	.859	55 _{/64}
.88	.875	7/8
.89	.891	57/64
.91	.906	29/32
.92	.922	⁵⁹ /64
.94	.938	¹⁵ /16
.95	.958	61/64
.97	.969	31/32
.98	.984	63/64
1.00	1.000	1

Application Engineering

Introduction

Information and guidelines provided in the application section are intended for general selection and application of spring set brakes. Unusual operating environments, loading or other undefined factors may affect the proper application of the product. Stearns application services are available to assist in proper selection or to review applications where the specifier may have questions.

A spring set brake is used to stop and hold a rotating shaft. Generally the brake is mounted to an electric motor, but can also be mounted to gear reducers, hoists, machinery or utilize a foot mount kit.

The brake should be located on the high speed shaft of a power transmission system. This permits a brake with the lowest possible torque to be selected for the system.

Spring set disc brakes use friction to stop (dynamic torque) and hold (static torque) a load. Energy of the motor rotor and moving load is converted to thermal energy (heat) in the brake during deceleration. The brakes are power released, spring applied. No electrical current is required to maintain the spring set condition.

The system designer will need to consider the mount surface and match the brake to the load and application. Factors include: brake torque, stopping time, deceleration rate, load weight and speed, location and environment. Brake thermal ratings, electrical requirements and environmental factors are discussed in separate sections.

Electrical Considerations

Solenoid actuated brakes (SAB's) are available with standard motor voltages, frequencies and Class B or H coil insulation. Most models can be furnished with either single or dual voltage coils. Coils in most models are field replaceable.

Inrush and holding amperage information is published for the common coil voltages and factory available for other voltages or frequencies. Amperage information for specific coil sizes is provided for selection of wire size and circuit protection at brake installation. Fixed voltage - 50/60 Hz dual frequency coils are available in many models.

All SAB AC coils are single phase and can be wired to either single or three phase motors without modifications. All solenoid coils have a voltage range of +/- 10% of the rated nameplate voltage at the rated frequency. Instantaneous rated voltage must be supplied to the coil to insure proper solenoid pull in and maximum coil cycle rate. The plunger rapidly seats in the solenoid and the amperage requirements drops to a holding amperage value.

Instantaneous voltage must be supplied to the coil to insure proper solenoid pull-in and maximum coil cycle rate.

Because Stearns Solenoid Actuated Brakes (SAB's) require low current to maintain the brake in the released position, the response time to set the brake *can* be affected by EMF voltages generated by the motor windings. It may be necessary to isolate the brake coil from the motor winding.

The solenoid coil cycle rate limits the engagements per minute of a static or holding duty brake. Brake thermal performance, discussed in another section, limits engagements per minute in dynamic applications.

Class B insulation is standard in most SAB models, class H coil insulation is optional and is recommended for environments above 104°F (40°C), or rapid cycling applications.

Armature actuated brakes (AAB's) are available in standard DC voltages. Available AC rectification is listed in the catalog section. Wattage information is provided in the catalog pages. Unlike solenoid actuated brakes, armature actuated brakes do not have inrush amperage. Coil and armature reaction time and resulting torque response time information is available. Like SAB, mechanical reaction time depends on typical application factors including load, speed and position.

Electrical response time and profiles are unique to the SAB and AAB. Reaction time requirements should be considered when selecting or interchanging brakes.

All Stearns brake coils are rated for continuous duty and can be energized continually without overheating. The coil heating effect is greatest at coil engagement due to engaging, pull in or inrush amperage.

Temperature limits as established by UL controls standards are:

Class A insulation	221°F (105°C)
Class B insulation	266°F (130°C)
Class H insulation	356°F (180°C).

Types of Applications

In order to simplify the selection of a disc brake, loads can be classified into two categories, non-overhauling and overhauling.

Loads are classified as non overhauling, if (1) no components of the connected equipment or external material undergo a change of height, such as would occur in hoisting, elevating or lowering a load, and (2) there is only rotary motion in a horizontal plane. For example, a loaded conveyor operating in a horizontal plane would be typical of a non-overhauling load.

If the same conveyor were transporting material to a lower level, it would be classified as an overhauling load. The external material or load undergoes a change in height, with the weight of the load attempting to force the conveyor to run faster than its design speed or to overhaul.

Non-overhauling loads require braking torque only to stop the load and will remain at rest due to system friction. Overhauling loads, such as a crane hoist, have two torque requirements. The first requirement is the braking torque required to *stop* the load, and the second requirement is the torque required to *hold* the load at rest. The sum of these requirements is considered when selecting a brake for an overhauling load.

Alignment

Requirements per NEMA: Permissible ECCENTRICITY of mounting rabbet (AK dimension):

42C to 286TC frames inclusive is 0.004" total indicator reading. 324TC to 505TC frames inclusive is 0.007" total indicator reading.

Face Runout:

42C to 286TC frames inclusive is 0.004" total indicator reading.

If a customer furnishes a face on the machine for brake mounting, the same tolerances apply. Floor mounted brakes must be carefully aligned within 0.005" for concentricity and angular alignment. Use of dowels to insure permanent alignment is recommended.

In offset brake mount locations such as fan covers, cowls or jack shafting, proper mount rigidity and bearing support must be provided. Spring set frictional brakes characteristically have a rapid stop during torque application which may affect the mount surface or contribute to shaft deflection.

Printed installation information is published and available on all Stearns spring set brakes.

Determining Brake Torque Torque ratings

Brake torque ratings are normally expressed as nominal static torque. That is, the torque required to begin rotation of the brake from a static, engaged condition. This value is to be distinguished from dynamic torque, which is the retarding torque required to stop a linear, rotating or overhauling load. As a general rule, a brake's dynamic torque is approximately 80% of the static torque rating of the brake for stopping time up to one second. Longer stopping time will produce additional brake heat and possible fading (reduction) of dynamic torque. The required dynamic torque must be converted to a static torque value before selecting a brake, using the relationship:

$$T_s = \frac{T_d}{0.8}$$

Where, T_s = Static torque, lb-ft

T_d = Dynamic torque, lb-ft

0.8 = Constant (derating factor)

All Stearns brakes are factory burnished and adjusted to produce no less than rated nominal static torque. Burnishing is the initial wear-in and mating of the rotating friction discs with the stationary metallic friction surfaces of the brake.

Although brakes are factory burnished and adjusted, variations in torque may occur if components are mixed when disassembling and reassembling the brake during installation. Further burnishing may be necessary after installation. Friction material will burnish under normal load conditions. Brakes used as holding only duty require friction material burnishing at or before installation to insure adequate torque.

When friction discs are replaced, the brake must be burnished again in order to produce its rated holding torque.

System Friction

The friction and rolling resistance in a power transmission system is usually neglected when selecting a brake. With the use of anti-friction bearings in the system, friction and rolling resistance is usually low enough to neglect. Friction within the system will assist the brake in stopping the load. If it is desired to consider it, subtract the frictional torque from the braking torque necessary to decelerate and stop the load. Friction and rolling resistance are neglected in the examples presented in this guide.

Non-overhauling Loads

There are two methods for determining brake torque for non-overhauling loads. The first method is to size the brake to the torque of the motor. The second is to select a brake on the basis of the total system or load inertia to be stopped.

Selecting Brake Torque from the Motor Data

Motor full-load torque based or nameplate horsepower and speed can be used to select a brake. This is the most common method of selecting a brake torque rating due to its simplicity. This method is normally used for simple rotary and linear inertial loads. Brake torque is usually expressed as a percent of the full load torque of the motor. Generally this figure is not less than 100% of the motor's full load torque. Often a larger service factor is considered. Refer to *Selection of Service Factor*.

The required brake torque may be calculated from the formula:

$$T_s = \frac{5,252 \times P}{N} \times SF$$

Where, T_s = Static brake torque, lb-ft

P = Motor horsepower, hp

N = Motor full load speed, rpm

SF = Service factor

5,252 = Constant

Match the brake torque to the hp used in the application. When an oversized motor hp has been selected, brake torque based on the motor hp may be excessive for the actual end use.

Nameplate torque represents a nominal static torque. Torque will vary based on combinations of factors including cycle rate, environment, wear, disc burnish and flatness. Spring set brakes provide a rapid stop and hold and are generally not used in repeat positioning applications.

Selection of Service Factor

A service factor is applied to the basic drive torque calculation. The SF compensates for any tolerance variation, data inaccuracy, unplanned transient torque and potential variations of the friction disc.

When using the basic equation: T= (hp x 5252) / rpm with nonoverhauling loads, a service factor of 1.2 to 1.4 is typical. Overhauling loads with unknown factors such as reductions may use a service factor of 1.4 to 1.8.

Spring set brakes combined with variable frequency drives use service factors ranging from 1.0 to 2.0 (2.0 for holding duty only) depending on the system design. These holding duty brakes must be wired to a separate dedicated power supply.

Occasionally, a brake with a torque rating less than the motor full load torque or with a service factor less than 1.0 is selected. These holding or soft stop applications must be evaluated by the end user or system designer to insure adequate sizing and thermal capacity.

Typically a brake rated 125% of the motor full load torque, or with a 1.25 service factor, provides a stop in approximately the same time as that required for the motor to accelerate the load to full load speed.

Occasionally a motor is oversized or undersized for the load or application. In these situations, the load inertia and desired stopping time calculations should be used rather than relying on the service factor method alone.

Service factor selection can be based on motor performance curves. Motor rotor and load inertia should be considered in this selection process. Depending on the motor design (NEMA A, B, C and D), rpm and horsepower, the maximum torque is either the starting or breakdown torque. A NEMA design B, 3 phase, squirrel cage design motor at breakdown torque produces a minimum of 250% the full load torque. A service factor of 2.5 would be selected. Typical service factors depending on NEMA motor design are: NEMA design A or B: 1.75 to 3.0, NEMA design C: 1.75 to 3.0 and NEMA design D: not less than 2.75.

A brake with an excessive service factor may result in system component damage, an unreasonably rapid stop or loss of load control. A SF above 2.0 is not recommended without evaluation by the end user or system designer.

Example 1: Select brake torque from motor horsepower and speed.

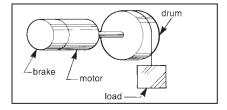
```
Given: Motor power (P) - 5 hp

Motor speed (N) - 1,750 rpm

Service factor (SF) - 1.4

T = \frac{5,252 \times P}{N} \times SF
= \frac{5,252 \times 5}{1,750} \times 1.4
T = 21 \text{ lb-ft}
```

A brake having a standard rating of 25 lb-ft nominal static torque would be selected.


Example 2 illustrates selection of a brake to provide proper static torque to hold a load if dynamic braking were used to stop the load.

Example 2: Select a brake to hold a load in position after some other method, such as dynamic braking of the motor, has stopped all rotation.

Given: Weight of load (W) - 5 lb

Drum radius (R) - 2 ft

Service factor (SF) - 1.4

The static holding torque is determined by the weight of the load applied at the drum radius. A service factor is applied to ensure sufficient holding torque is available in the brake.

$$T_s = F \times R \times SF$$
$$= 5 \times 2 \times 1.4$$
$$T_s = 14 \text{ lb-ft}$$

Sizing the Brake to the Inertial Load

For applications where the load data is known, where high inertial loads exist, or where a stop in a specified time or distance is required, the brake should be selected on the basis of the total inertia to be retarded. The total system inertia, reflected to the brake shaft speed, would be:

$$Wk_{T}^{2} = Wk_{B}^{2} + Wk_{M}^{2} + Wk_{L}^{2}$$

Where: Wk_T^ = Total inertia reflected to the brake, Ib-ft^2

- Wk_B^2 = Inertia of brake, lb-ft²
- Wk_{M}^{2} = Inertia of motor rotor, Ib-ft²
- Wk²_L = Equivalent inertia of load reflected to brake shaft, lb-ft²

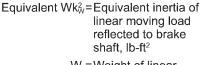
Other significant system inertias, including speed reducers, shafting, pulleys and drums, should also be considered in determining the total inertia the brake would stop.

If any component in the system has a rotational speed different than the rotational speed of the brake, or any linear moving loads are present, such as a conveyor load, their equivalent inertia in terms of rotary inertia at the brake rotational speed must be determined. The following formulas are applicable:

Rotary motion:

Equivalent
$$Wk_B^2 = Wk_L^2 \left(\frac{N_L}{N_B}\right)^2$$

Where,


Equivalent Wk_B^2 = Inertia of rotating load reflected to brake shaft, Ib-ft² Wk_L^2 = Inertia of rotating load, Ib-ft² N_L =Shaft speed at load, rpm

> N_B=Shaft speed at brake, rpm

Horizontal Linear Motion

Equivalent $Wk_W^2 = W\left(\frac{V}{2\pi N_B}\right)^2$

Where,

- W = Weight of linear moving load, lb
- V = Linear velocity of load, ft/min N_B=Shaft speed

at brake, rpm

Once the total system inertia is calculated, the required average dynamic braking torque can be calculated using the formula:

$$T_{d} = \frac{Wk_{T}^{2} \times N_{B}}{308 \times t}$$

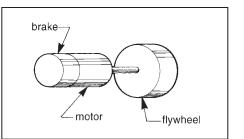
Where, T_{d} = Average dynamic
braking torque, lb-ft
Wk_{T}^{2} = Total inertia reflected

- to brake, lb-ft² N_B = Shaft speed at
 - brake, rpm t = Desired stopping
 - time, sec
- 308 = Constant

The calculated dynamic torque is converted to the static torque rating using the relationship:

$$T_s = \frac{T_D}{0.8}$$

Where, T_s = Brake static torque, lb-ft T_d = System dynamic torque, lb-ft


Examples 3, 4, 5 and 6 illustrate how brake torque is determined for nonoverhauling loads where rotary or horizontal linear motion is to be stopped.

Example 3: Select a brake to stop a rotating flywheel in a specified time.

Given, Motor speed (N_M) - 1,750 rpm Motor inertia (Wk_M²) - 0.075 lb-ft² Flywheel inertia (Wk_F²) - 4 lb-ft² Brake inertia (Wk_B²) - 0.042 lb-ft² Required stopping time (t) - 1 sec

First determine the total inertia to be stopped,

 $Wk_{T}^{2} = Wk_{M}^{2} + Wk_{FW}^{2} + Wk_{B}^{2}$ = 0.075 + 4 + 0.042 $Wk_{T}^{2} = 4.117 \text{ lb-ft}^{2}$

The dynamic braking torque required to stop the total inertia in 1 second is,

$$T_{d} = \frac{Wk_{T}^{2} \times N_{BM}}{308 \times t}$$
$$= \frac{4.117 \times 1,750}{308 \times 1}$$
$$T_{d} = 23.4 \text{ lb-ft}$$
Converting T_d to static torque

$$T_s = \frac{3.6}{0.8}$$

= $\frac{23.4}{0.8}$
 $T_s = 29.3$ lb-ft

A brake having a standard static torque rating of 35 lb-ft would be selected. Since a brake with more torque than necessary to stop the flywheel in 1 second is selected, the stopping time would be,

$$= \frac{Wk_T^2 \times N_{BM}}{308 \times T_d}$$

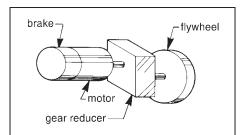
=
$$\frac{Wk_T^2 \times N_{BM}}{308 \times (0.8 T_s)}$$
$$\frac{4.117 \times 1,750}{308 \times (0.8 \times 35)}$$

t = 0.84 sec

t

See section on *Stopping Time* and *Thermal Information*.

Example 4: Select a brake to stop a rotating flywheel, driven through a gear reducer, in a specified time.


Given: Motor speed (N_M) - 1,800 rpm

Motor inertia (Wk $_{M}^{2}$) - 0.075 lb-ft²

Gear reduction (GR) - 20:1

 $\begin{array}{l} \mbox{Gear reducer inertia at high} \\ \mbox{speed shaft } (Wk_{GR}^2) \mbox{-} 0.025 \mbox{ lb-ft}^2 \\ \mbox{Flywheel inertia } (Wk_{FW}^2) \mbox{-} 20 \mbox{ lb-ft}^2 \\ \mbox{Required stopping time } (t) \mbox{-} \end{array}$

0.25 sec

First, determine rotating speed of flywheel (N_{FW})

$$N_{FW} = \frac{N_{BM}}{GR}$$
$$= \frac{1,800}{20}$$
$$N_{FW} = 90 \text{ rpm}$$

Next, the inertia of the flywheel must be reflected back to the motor brake shaft.

$$Wk_{b}^{2} = Wk_{FW}^{2} \left(\frac{N_{FW}}{N_{M}}\right)^{2}$$
$$= 20 \left(\frac{90}{1,800}\right)^{2}$$

$$Wk_{b}^{2} = 0.05 \text{ lb-ft}^{2}$$

Determining the total Wk²,

$$Wk_{T}^{2} = Wk_{M}^{2} + Wk_{GR}^{2} + Wk_{b}^{2}$$

= 0.075 + 0.025 + 0.05
$$Wk_{T}^{2} = 0.15 \text{ lb-ft}^{2}$$

The required dynamic torque to stop the flywheel in 0.25 seconds can now be determined.

$$T_{d} = \frac{Wk_{T}^{2} \times N_{BM}}{308 \times t}$$
$$T_{d} = \frac{0.15 \times 1,800}{308 \times 0.25}$$
$$T_{d} = 3.5 \text{ lb-ft}$$

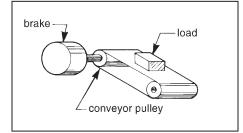
Converting dynamic torque to static torque,

$$T_{s} = \frac{T_{d}}{0.8}$$
$$= \frac{3.5}{0.8}$$
$$T_{s} = 4.4 \text{ Ib-ft}$$

A brake having a standard static torque rating of 6 lb-ft would be selected. Since a brake with more torque than necessary to stop the flywheel in 0.25 seconds is selected, the stopping time would be,

$$\begin{split} t &= \frac{Wk_{T}^{2} \times N_{M}}{308 \times T_{d}} \\ &= \frac{Wk_{T}^{2} \times N_{M}}{308 \times (0.8 \times T_{s})} \\ &= \frac{0.15 \times 1,800}{308 \times (0.8 \times 6)} \\ t &= 0.18 \text{ sec} \end{split}$$

See section on *Stopping Time* and *Thermal Information*.


Example 5: Select a brake to stop a load on a horizontal belt conveyor in a specified time.

Given:

Conveyor pulley speed (N $_{\rm p}$) - 32 rpm Weight of load (W) - 30 lb

Conveyor pulley and belt inertia (Wk_{P}^2) - $4.0~\text{lb-}\text{ft}^2$

Conveyor pulley diameter (d_p) - 1 ft Required stopping time (t) - 0.25 sec

First, convert the rotational pulley speed to linear belt speed (V_B).

$$V_{B} = \pi d_{p}N_{p}$$
$$= \pi \times 1 \times 32$$
$$V_{B} = 100.5 \text{ ft/min}$$

Next, determine inertia of load.

$$Wk_{W}^{2} = W \left(\frac{V_{B}}{2\pi \times N_{p}}\right)^{2}$$
$$= 30 \left(\frac{100.5}{2\pi \times 32}\right)^{2}$$
$$Wk_{W}^{2} = 7.5 \text{ ft-lb}^{2}$$

Then, determine total inertial load

$$Wk_{T}^{2} = Wk_{W}^{2} + Wk_{F}^{2}$$
$$= 7.5 + 4.0$$
$$Wk_{T}^{2} = 11.5 \text{ lb-ft}^{2}$$

The required dynamic torque to stop the conveyor load in 0.25 seconds can now be determined.

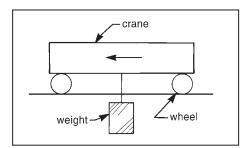
$$T_{d} = \frac{Wk_{f}^{2} \times N_{p}}{308 \times t}$$
$$T_{d} = \frac{11.5 \times 32}{308 \times 0.25}$$
$$T_{d} = 4.8 \text{ lb-ft}$$

Converting dynamic torque to static torque,

$$T_{s} = \frac{T_{d}}{0.8}$$
$$= \frac{4.8}{0.8}$$
$$T_{s} = 6 \text{ lb-ft}$$

A brake having a standard static torque rating of 6 lb-ft would be selected. See *Thermal Information.*

Example 6: Select a brake to stop a trolley crane and its load in a specified time. Brake mounted on wheel axle.


Given:

Weight of crane (W_c) - 2,000 lb

Weight of load (W_L) - 100 lb

Trolley velocity (v) - 3 ft/sec or 180 ft/min

Radius of trolley wheel (r) - 0.75 ft Required stopping time (t) - 2 sec

The dynamic braking torque required to stop the trolley crane and load can be determined by one of two methods. The first method is to determine the equivalent inertia of the linearly moving crane and load, then calculate the dynamic braking torque. The second method is to determine the dynamic braking torque directly.

Using the first method, the total weight to be stopped is determined first.

$$W_T = W_L + W_C$$

= 100 + 2.000

 $W_{T} = 2,100 \text{ lb}$

Next, the rotational speed of the axle $(N_{\scriptscriptstyle B})$ is calculated.

$$N_{B} = \frac{V}{2\pi r}$$
$$= \frac{180}{2 x \pi x \ 0.75}$$
$$N_{B} = 38.2 \text{ rpm}$$

Then, the equivalent inertia of the linearly moving crane and load is determined.

$$Wk_{T}^{2} = W_{T} \left(\frac{V}{2\pi N_{B}} \right)^{2}$$
$$= 2,100 \left(\frac{180}{2\pi 38.2} \right)^{2}$$
$$Wk_{T}^{2} = 1.181 \text{ Ib-} \text{ft}^{2}$$

Finally, the dynamic braking torque required to stop the total inertia in 2 seconds is,

$$\begin{split} T_{d} &= \frac{Wk_{T}^{2} \times N_{B}}{308 \times t} \\ &= \frac{1,181 \times 38.2}{308 \times 2} \\ T_{d} &= 73 \text{ lb-ft} \end{split}$$

Using the second method, the dynamic braking torque required to stop the crane and load in 2 seconds can be calculated directly using the formula,

$$T_d = \frac{W_T^{\vee}}{qt} \times$$

- Where, T_d = Average dynamic braking torque, lb-ft
 - W_t = Total weight of linear moving load, lb
 - v = Linear velocity of load, ft/sec
 - g = Gravitational acceleration constant, 32.2 ft/sec²
 - t = Desired stopping time, sec
 - r = Length of the moment arm (wheel radius), ft

or, for this example,

$$T_{d} = \frac{2,100 \times 3}{32.2 \times 2} \times .75$$

 $T_d = 73$ lb-ft

For both methods above, the required dynamic braking torque is converted to static torque,

$$T_{s} = \frac{T_{d}}{0.8}$$
$$= \frac{73}{0.8}$$
$$T_{s} = 91 \text{ lb-ft}$$

A smaller brake could be mounted on the high speed shaft in place of the higher torque on the low speed shaft.

A brake having a standard static torque rating of 105 lb-ft is selected. Since a brake with more torque than necessary to stop the load in 2 seconds is selected, the stopping time would be,

$$T = \frac{W_{T}^{\vee}}{gT_{d}} \times r$$

= $\frac{W_{T}^{\vee}}{g \times (0.8 \times T_{s})} \times r$
= $\frac{2,100 \times 3}{32.2 \times (0.8 \times 105)} \times 0.75$
t = 1.8 sec

See section on *Stopping Time* and cycle rates, *Thermal Selection*. Stops should be under 2 seconds. Longer stops require application test.

Overhauling Loads

Applications with a descending load, such as power lowered crane, hoist or elevator loads, require a brake with sufficient torque to both *stop* the load, and *hold* it at rest. Overhauling loads having been brought to rest still invite motion of the load due to the effect of gravity. Therefore, brake torque must be larger than the overhauling torque in order to stop and hold the load. If brake torque is equal to or less than the overhauling torque, there is no net torque available for stopping a descending load.

First, the total system inertia reflected to the brake shaft speed must be calculated.

Second, the average dynamic torque required to decelerate the descending load in the required time is calculated with the formula:

$$T_{d} = \frac{Wk_{T}^{2} \times N_{B}}{308 \times t}$$

Where, T_d = Average dynamic braking torque, lb-ft Wk_T^2 = Total inertia reflected to brake, Ib-ft²

- N_B = Shaft speed at brake, rpm. Consider motor slip when descending.
 - t = Desired stopping time, sec

Third, the overhauling torque reflected to the brake shaft is determined by the formula:

$$T_o = W \times R \times \frac{N_L}{N_B}$$

- Where, T_o = Overhauling dynamic torque of load reflected to brake shaft, lb-ft
 - W = Weight of overhauling load, Ib
 - R = Radius of hoist or elevator drum, ft
 - N_{L} = Rotating speed of drum, rpm
 - N_B = Rotating speed at brake, rpm

Or alternately, the dynamic torque to overcome the overhauling load can be calculated with the formula:

$$T_{o} = \frac{0.158 \text{ x W x V}}{N_{B}}$$

- Where, T_o = Overhauling dynamic torque of load reflected to brake shaft, lb-ft
 - W = Weight of overhauling load, lb
 - V = Linear velocity of descending load, ft/min
 - N_B = Shaft speed at brake, rpm
 - 0.158 = Constant

Next, the total dynamic torque required to stop and hold the overhauling load is the sum of the two calculated dynamic torques:

 $T_t = T_d + T_o$

Finally, the dynamic torque must be converted to static brake torque to select a brake:

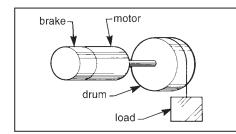
$$\begin{split} T_{s} &= \frac{T_{d}}{0.8} \\ \text{Where, } T_{s} &= \text{Brake static torque, lb-ft} \\ T_{t} &= \text{System dynamic} \\ \text{torque, lb-ft} \end{split}$$

If the total inertia of the system and overhauling load cannot be accurately determined, a brake rated at 180% the motor full load torque should be selected. Refer to *Selection of Service Factor*. The motor starting torque may permit a heavier than rated load to be lifted; the brake must stop the load when descending.

Examples 7, 8 and 9 illustrate how brake torque would be determined for overhauling loads. In these examples brakes are selected using the system data rather than sizing them to the motor. Refer to the section on *Thermal Calculations* to determine cycle rate.

Consider motor slip in calculation. An 1800 rpm motor with 10% slip would operate at 1,620 rpm when the load is ascending and 1,980 rpm when descending. Motor rpm, armature inertia and load position will affect stop time. Brakes on overhauling loads should be wired through a dedicated relay.

Example 7: Select a brake to stop an overhauling load in a specified time.


Given: Cable speed (V) - 667 ft/min

Weight of load (W) - 100 lb Drum diameter (D) - 0.25 ft Drum inertia (Wk $_{0}^{2}$) - 5 lb-ft²

Required stopping time (t) -1 sec First, determine brakemotor shaft

speed (N_B).

$$NB = \frac{V}{\pi D}$$
$$= \frac{667}{\pi \times 0.25}$$

Then, determine the equivalent inertia of the overhauling load.

$$Wk_{f}^{2} = W\left(\frac{V}{2\pi N_{B}}\right)^{2}$$
$$= 100\left(\frac{667}{2\pi \times 849}\right)^{2}$$
$$Wk_{f}^{2} = 1.56 \text{ lb-ft}^{2}$$

Therefore, the total inertia at the brake is,

$$Wk_{1}^{2} = Wk_{D}^{2} + Wk_{I}^{2}$$
$$= 5 + 1.56$$
$$Wk_{T}^{2} = 6.56 \text{ lb-ft}^{2}$$

Now, the dynamic torque required to decelerate the load and drum in the required time is calculated.

$$T_{d} = Wk_{T}^{2} \times N_{B}$$

= $\frac{6.56 \times 850}{308 \times 1}$
 $T_{d} = 18.1 \text{ lb-ft}$

Next, calculate the dynamic torque required to overcome the overhauling load.

$$T_o = W \times R$$

= 100 x $\frac{0.25}{2}$
 $T_o = 12.5$ lb-ft

The total dynamic torque to stop and hold the overhauling load is the sum of the two calculated dynamic torques.

$$T_t = T_d + T_o$$

= 18.1 + 12.5
 $T_t = 30.6$ lb-ft

Dynamic torque is then converted to static torque.

$$T_s = \frac{T_t}{0.8}$$

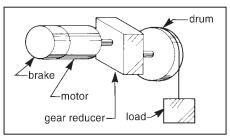
= $\frac{30.6}{0.8}$
 $T_s = 38.3 \text{ lb-ft}$

۷

C

ť

A brake having a standard torque rating of 50 lb-ft is selected based on expected stop time. Since a brake with more torque than necessary to stop the load in 1 second is selected, the stopping time would be,


$$t = \frac{WK_{f \times N}}{308 \times T_{d}}$$

where, $T_{s} = \frac{T_{t}}{0.8}$
 $= \frac{T_{d} + T_{0}}{0.8}$
or, $T_{d} = 0.8T_{s} - T_{0}$
 $= (0.8) (50) - 12.5$
 $T_{d} = 27.5 \text{ lb-ft}$
therefore, $t = \frac{6.56 \times 850}{308 \times 27.5}$
 $t = 0.7 \text{ sec}$

Wire the brake through a dedicated relay on overhauling loads where stop time or distance is critical. See section on *Stopping time*.

Example 8: Select a brake to stop an overhauling load driven through gear reducer in a specified time.

Given: Motor speed $(N_M) - 1,150 \text{ rpm}$ Motor inertia $(WK_M^2) - 0.65 \text{ lb-ft}^2$ Gear reduction (GR) - 300:1 Drum diameter (D) - 1.58 ft Weight of load (W) - 4,940 lb Drum inertia $(WK_D^2) - 600 \text{ lb-ft}^2$ Required stopping time (t) - 0.5 sec

First, calculate all inertial loads reflected to the brakemotor shaft.

The rotational speed of the drum is,

$$N_{D} = \frac{N_{M}}{GR}$$
$$= \frac{1,150}{300}$$
$$N_{D} = 3.83 \text{ rpm}$$

From this, the cable speed can be determined.

$$V = N_D \times \pi D$$

= 3.83 x π x 1.58
V = 19.0 ft/min

The equivalent inertia of the load reflected to the brakemotor shaft is,

$$Wk_{I}^{2} = W \left(\frac{V}{2\pi N_{BM}}\right)^{2}$$

= 4,940 $\left(\frac{19.0}{2\pi 1,150}\right)^{2}$
Wk_{I}^{2} = 0.034 lb-ft^{2}

The equivalent inertia of the drum at the brakemotor shaft speed is,

12

$$Wk_{d}^{2} = Wk_{b}^{2} \left(\frac{N_{D}}{N_{BM}}\right)^{2}$$
$$= 600 \left(\frac{3.83}{1,150}\right)^{2}$$

Finally, the total inertia the brake will retard is,

 $Wk_T^2 = Wk_M^2 + Wk_T^2 + Wk_d^2$

Wk_T^d =.0067 lb-ft²

Wk_T² =0.691 lb-ft²

The dynamic torque required to decelerate the total inertia is,

$$\begin{split} T_{d} = & \frac{Wk_{1}^{2} \times N_{BM}}{308 \times t} \\ = & \frac{0.691 \times 1,150}{308 \times 0.5} \\ T_{d} = & 5.16 \ lb-ft^{2} \end{split}$$

Now, calculate the dynamic torque to overcome the overhauling load.

 $T_o = W \times R = W \times \frac{1.58}{2}$ = 4,940 x $\frac{1.58}{2}$ $T_o = 3,903$ lb-ft

Which reflected to the brakemotor shaft becomes,

$$T_{m} = \frac{I_{0}}{GR}$$
$$= \frac{3,903}{300}$$
$$T_{m} = 13.0 \text{ lb-ft}$$

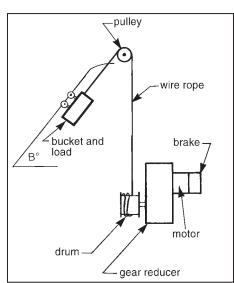
Then, the total dynamic torque to stop and hold the overhauling load is the sum of the two calculated dynamic torques.

Dynamic torque is then converted to static torque.

$$T_{s} = \frac{T_{t}}{0.8}$$
$$= \frac{18.16}{0.8}$$
$$T_{s} = 22.7 \text{ lb-ft}$$

A brake having a standard torque rating of 25 lb-ft is selected.

Example 9: Select a brake to stop and hold a load on an inclined plane (skip hoist).


Given: Motor data Power (P) - 7½ hp Speed (N_M) - 1,165 rpm Rotor inertia (WK₄) - 1.4 lb-ft²

Gear reducer data:

Reduction (G_R) - 110:1 Inertia at input shaft (Wk_R^2) - 0.2 lb-ft²

Drum data Diameter (D_D) - 1.5 ft Inertia (Wk_D^2) - 75 lb-ft²

Pulley data Diameter (D_P) - 1.5 ft Inertia (Wk β) - 20 lb-ft² Bucket weight (W_B) - 700 lb Maximum weight of load (W_L) - 4,000 lb Slope of track (B) -52.7°

Required stopping time (t) -1 sec

The bucket is full when ascending the track and is empty when descending. When selecting a brake the most severe condition would be a fully loaded bucket backed down the hoist track. In normal operation the descending bucket would be empty. In this example, the brake is selected for the most severe condition.

The total torque to stop and hold the bucket and load when descending is the sum of (a) the torque to decelerate the total inertia and (b) the torque required to hold the loaded bucket.

First, calculate all inertial loads reflected to the brakemotor shaft. The rotational speed of the drum is:

$$N_{D} = \frac{N_{M}}{GR}$$
$$= \frac{1,165}{110}$$
$$N_{D} = 10.6 \text{ rpm}$$

From this the cable speed can be determined

$$V = N_D x \pi D_D$$

= 10.6 x π x 1.5
 $V = 50$ ft/min

The equivalent inertia of the loaded bucket reflected to the brakemotor shaft is,

$$Wk_{\rm I}^2 = W \left(\frac{V}{2\pi N_{\rm M}}\right)^2$$

= 4,700 $\left(\frac{50}{2\pi \times 1,165}\right)^2$
Wk_{\rm I}^2 = 0.219 lb-ft^2

Next, the inertia of the pulley and drum are reflected to the brake motor shaft speed so the total inertia at the brake can be determined.

Since the diameters of the pulley and drum are the same, 1.5 ft, their rotational speeds would be the same, 10.6 rpm.

The inertia of the pulley reflected to the brakemotor shaft is,

 $Wk_{\beta}^{2} = Wk_{\beta}^{2} \left(\frac{N_{D}}{N_{M}}\right)^{2} = Wk_{\beta}^{2} \left(\frac{1}{GR}\right)^{2}$ $= 20 \times \left(\frac{1}{110}\right)^{2}$ $Wk_{\beta}^{2} = 0.0017 \text{ Ib-ft}^{2}$

The inertia of the drum reflected to the brakemotor shaft is,

$$Wk_{d}^{2} = Wk_{d}^{2} \left(\frac{N_{D}}{N_{M}}\right)^{2} = Wk_{d}^{2} \left(\frac{1}{GR}\right)^{2}$$
$$= 75 \times \left(\frac{1}{110}\right)^{2}$$
$$Wk_{d}^{2} = 0.0062 \text{ lb-ft}^{2}$$

The total inertia to be stopped is,

 $Wk_{1}^{2} = Wk_{1}^{2} + Wk_{p}^{2} + Wk_{d}^{2} + Wk_{R}^{2} + Wk_{M}^{2}$

= 0.219 + 0.0017 + 0.0062 + 0.2 + 1.4

Wk² = 1.827 lb-ft

Then, the dynamic torque required to bring the descending bucket and load to rest is,

$$T_{d} = \frac{Wk_{T}^{2} \times N_{M}}{308 \times T_{d}}$$
$$T_{d} = \frac{1.827 \times 1,165}{308 \times 1}$$

The additional dynamic torque required to hold the overhauling load would be determined by the unbalanced component of the force acting along the plane of the hoist track, W_T sinB, and the length of the moment arm which is the drum radius (R_D). W_T sinB is the force necessary to retard downward motion of the loaded hoist bucket.

=
$$4,700 \times \sin 52.7^{\circ} \times \frac{1}{2}(1.5)$$

= $4,700 \times 0.7955 \times 0.75$

Which reflected to the brakemotor shaft becomes,

$$T_m = \frac{T_o}{GR}$$
$$= \frac{2,804}{110}$$
$$T_m = 25.5 \text{ lb-ft}$$

Then, the total dynamic torque to stop and hold the descending bucket and load is the sum of the two calculated dynamic torques.

$$T_t = T_d + T_m$$

= 6.9 + 25.5
 $T_t = 32.4$ lb-ft

Converting to static torque,

$$T_{s} = \frac{T_{t}}{0.8}$$
$$= \frac{32.4}{0.8}$$
$$T_{s} = 40.5 \text{ lb-ft}$$

A brake having a standard torque rating of 50 lb-ft is selected. Since a brake with more torque than necessary to stop the load in 1 second is selected, the stopping time would be,

$$\begin{split} t &= \frac{W_{1}^{2} \times N_{M}}{308 \times T_{d}} \\ \text{Where, } T_{s} &= \frac{T_{t}}{0.8} \\ &= \frac{T_{d} + T_{m}}{0.8} \\ \text{or, } T_{d} &= 0.8T_{s} - T_{m} \\ &= (0.8)(50) - 25.5 \\ T_{d} &= 14.5 \text{ lb-ft} \\ \text{therefore,} \\ t &= \frac{1.827 \times 1.165}{308 \times 14.5} \\ t &= 0.48 \text{ sec} \end{split}$$

See section on Stopping time.

Stopping Time and Deceleration Rate

In the formulas used to determine dynamic torque, stopping time or "t" in seconds is a desired or assumed value selected on the requirements of the application. For optimum brake performance, a stopping or braking time of 1 second or less is desirable. Stop times between 2 and 3 seconds require test. A brake of insufficient torque rating will lengthen the stopping time. This may result in overheating of the brake to a point where torque falls appreciably. The friction material could carbonize, glaze, or fail.

After determining the braking torque required by a system, it may be necessary to recalculate the stopping time based on the actual brake size selected to insure that stopping time falls within the 0 to 2 second range. Any formula, where the stopping time is a variable, may be rewritten to solve for the new stopping time. For instance, the dynamic torque equation may be transposed as follows:

$$T_{d} = \frac{Wk_{f}^{2} \ge N_{B}}{308 \times t}$$

or,
$$t = \frac{Wk_{f}^{2} \ge N_{B}}{308 \times (0.8 \times T_{S})}$$

Where, t = Stopping time, sec

- Wk²_T = Total inertia reflected to brake, lb-ft²
 - N_B = Shaft speed at brake, rpm
 - T_s = Nominal static torque rating of brake, lb-ft
 - T_d = Dynamic braking torque (0.8 x T_s), lb-ft
- 0.8 = Constant (derating factor)
- 308 = Constant

Brakes are rated in static torque. This value is converted to dynamic torque, as done in the above equation, when stopping time is calculated. That is,

 $T_{\rm d}$ = 0.8 x $T_{\rm S}$ Where, $T_{\rm d}$ = Dynamic braking torque,

lb-ft T_s = Nominal static torque

rating of brake, lb-ft

The approximate number of revolutions the brake shaft makes when stopping is:

Revolutions to stop =
$$\frac{t \times N_B}{120}$$

Where, t = Stopping time, sec
 N_B = Shaft speed at brake, rpm

120 = Constant

The average rate of deceleration when braking a linearly moving load to rest can be calculated using the stopping time determined by the above formula and the initial linear velocity of the load.

$$a = -\frac{V_i}{t}$$

Where, a = Deceleration, ft/sec^2

V_i = Initial linear velocity of load, ft/sec

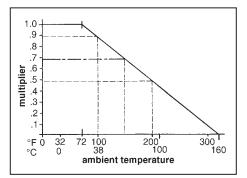
t = Stopping time, sec

RPM Considerations

The maximum allowable rotational speed of the brake should not be exceeded in braking. Maximum brake rpm as listed in the catalog is intended to limit stopping time to 2 seconds or less and insure friction disc stability. Brakes are not dynamically balanced because of the low brake inertia.

Determining Required Thermal Capacity

Thermal Ratings


When a brake stops a load, it converts mechanical energy to thermal energy or heat. The heat is absorbed by components of the brake. This heat is then dissipated by the brake. The ability of a given brake to absorb and dissipate heat without exceeding temperature limitations is known as thermal capacity.

There are two categories of thermal capacity for a brake. The first is the *maximum* energy the brake can absorb in one stop, generally referred to as a "crash" or "emergency" stop. The second is the heat dissipation capability of the brake when it is cycled frequently. *To achieve optimum brake performance, the thermal rating should not be exceeded. They are specified for a predetermined maximum temperature rise of the brake friction material.*

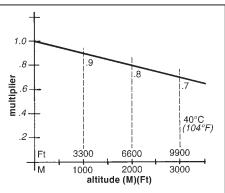
The ability of a brake to absorb and dissipate heat is determined by many factors, including the design of the brake, the ambient temperature, brake enclosure, position of the brake, the surface that the brake is mounted to, and the altitude. The rating for a given brake is the maximum allowable. Longer brake life results when the brake has more thermal capacity than a power transmission requires. Much shorter life or brake failure will result when the thermal capacity rating is exceeded. Ratings are determined at an ambient temperature of $72^{\circ}F$ ($22^{\circ}C$), with the brake in a horizontal position, with a stopping time of 1 second or less, and with no external heat source such as a motor.

Ambient temperature will limit the thermal capacity of a brake. Temperatures above 72°F (22°C) require derating of the thermal capacity rating. For example, at 150°F, thermal capacity is reduced approximately 30% (see *Derating Thermal Capacity Chart*).

CHART: Derating Thermal Capacity

A temperature range of $20^{\circ}F(0^{\circ}C)$ to $104^{\circ}F(40^{\circ}C)$ is acceptable in most brake applications. Above $104^{\circ}F$ also consider Class H coil insulation.

Thermal capacity ratings are determined with enclosures on the brake. Other customer furnished covers or cowls may affect a brake's thermal capacity. The effect on thermal capacity should be evaluated. In some cases, thermal capacity may be increased by use of air or liquid cooling. However, provisions must be made to prevent contaminating the brake internally.


Brakes with brass stationary discs are derated 25%.

The mounting position of a brake will also affect thermal capacity. The specified ratings are for brakes mounted in a horizontal position with the solenoid plunger above the solenoid. For brakes mounted in a vertical position, or 15° or more from horizontal, the thermal capacity decreases due to friction disc drag. Brakes are modified for vertical operation to minimize the drag. 2- and 3- disc brakes are derated 25%, 4-disc brakes are not recommended for vertical use.

Thermal capacity ratings are established without external sources of heat increasing the brake temperature. The surface that a brake is mounted to, such as an electric motor or gear reducer, will limit the heat dissipation capability or thermal capacity of a brake. These sources of heat should be evaluated when determining the thermal requirements of the system for which the brake is selected.

High altitudes may also affect a brake's thermal capacity. Stearns brakes will operate to 10,000 ft above sea level at 72°F ($22^{\circ}C$) ambient temperature. At 104°F ($40^{\circ}C$) ambient temperature, altitude and temperature adjustments occur. Refer to NEMA MG1-1993 Section 14 for additional information.

CHART: Altitude & Thermal Capacity

Maximum Energy Absorption

The thermal capacity of a brake is limited by the maximum energy it can absorb in one stop. This factor is important when stopping extremely high inertial loads at infrequent intervals. Such use of a brake requires extensive cooling time before it can be operated again.

The energy a brake is required to absorb in one stop by a given power transmission system is determined by the formulas below. The calculated energy of the system should not exceed the maximum kinetic energy rating of the brake. System energy exceeding the brake's maximum rating may result in overheating of the brake to a point where torque falls appreciably. The friction material of the brake could glaze, carbonize or fail.

In the case of linear loads, the energy that the brake must absorb is kinetic energy. It is determined by the formula:

$$KE_{I} = \frac{W_{V}}{2a}$$

KE_I = Kinetic energy of linear moving load, lb-ft

W = Weight of load, Ib

- v = Linear velocity of load, ft/sec
- g = Gravitational acceleration constant, 32.2 ft/sec²

In the case of rotational loads, the energy that the brake must absorb is also kinetic energy. It is determined by the formula:

$$KE_r = \frac{Wk_r^2 \times N_B^2}{5875}$$

Where, KE_r = Kinetic energy of linear load, lb-ft

- Wk_T^2 = Inertia of the rotating load reflected to brake shaft, Ib-ft²
- N_B = Shaft speed at brake, rpm
- 5875 = Constant

In the case of overhauling loads, both the kinetic energy of the linear and rotating loads and the potential energy transformed into kinetic energy by the change in height or position must be considered when determining the total energy that the brake must absorb. The potential energy transformed to kinetic energy is determined by the formula:

PE = Ws

Where, PE = Change in potential energy, ft-lb

- W = Weight of overhauling load, lb
- s = Distance load travels, ft

Thus, the total energy to be absorbed by a brake stoping an overhauling load is:

$$E_T = KE_I + KE_r + PE$$

Example 10 illustrates how energy absorption for Example 8 would be determined for one stop.

Example 10: Determine the total energy absorbed by a brake in one stop.

In Example 8, the calculation for total energy to be absorbed would be as follows.

First, calculate the kinetic energy of the linear load. The load weight was 4,940 lb and the velocity is 19 ft/min or 0.317 ft/sec. The kinetic energy is:

$$KE_{I} = \frac{W_{V}^{2}}{2g}$$
$$= \frac{4,940 \times 0.317^{2}}{2 \times 32.2}$$
$$KE_{I} = 7.71 \text{ ft-lb}$$

Next, calculate the kinetic energy for the rotational load. The motor inertia is 0.65 lb-ft² and the drum inertia reflected to the brake shaft speed is 0.0067 lb-ft². The total rotational inertia at the brakemotor shaft is,

$$Wk_r^2 = Wk_M^2 + Wk_d^2$$

= 0.65 + 0.0067
 $Wk_r^2 = 0.6567 \text{ lb-ft}^2$

And the kinetic energy of the rotating components is,

$$KE_{r} = \frac{Wk_{r}^{2} \times N_{B}^{2}}{5.875}$$
$$= \frac{0.6567 \times 1,150^{2}}{5.875}$$
$$KE_{I} = 147.8 \text{ ft-lb}$$

Now, calculate the potential energy converted to kinetic energy due to the change in position of the load while descending. A descending load is the most severe case since potential energy is transformed to kinetic energy that the brake must absorb. A 25 lb-ft brake was selected in Example 8. The 25 lb-ft static torque rating is converted to dymanic torque,

$$T_t = T_s \times 0.8$$

= 25 x 0.8
 $T_t = 20 \text{ lb-ft}$

Of this torque, 13.0 lb-ft is required to overcome the overhauling load as determined in Example 8. The dynamic torque available to decelerate the load is,

 $T_{d} = T_{t} - T_{m}$ = 20 - 13 $T_{d} = 7 \text{ lb-ft}$

The stopping time resulting from this dynamic torque is,

$$\begin{split} t &= \frac{Wk_{fx}^2 N_{M}}{308 \text{ x } T_{d}} \\ &= \frac{0.691 \text{ x } 1,150}{308 \text{ x } 7} \\ t &= 0.369 \text{ sec} \end{split}$$

Where, $Wk_1^2 = 0.690 \text{ lb-ft}^2$ is the total inertia the brake is to retard as determined in Example 8. With the load traveling at 19.0 ft/min or 0.317 ft/sec, the distance it will travel is,

 $s = \frac{1}{2} vt$ = $\frac{1}{2} x 0.317 x 0.369$ s = 0.059 lb-ft Wire the brake through a dedicated relay on overhauling loads where stop time or distance is critical. The potential energy transformed to kinetic energy in this distance would be,

Thus, the total energy to be absorbed by the brake would be,

$$E_T = KE_I + KE_r + PE$$

= 7.71 + 147.8 + 291
 $E_T = 447$ lb-ft

The 25 lb-ft brake selected in Example 8 should be capable of absorbing 447 ft-lb of energy. The brake's maximum kinetic energy absorption rating should exceed this value.

Motor slip and test loads (150% of load) should be considered both in sizing and thermal calculations.

Brakes overheated in testing will require inspection before using in the standard application.

Heat dissipation in cyclic applications

In general, a brake will repetitively stop a load at the duty cycle that a standard electric motor can repetitively start the load. A brake's thermal capacity is based upon the heat it can absorb and dissipate while cycling. The thermal capacity ratings for brakes are listed in the specification tables for specific brake models.

The energy that a brake is required to absorb and dissipate by a given power transmission system is determined from the total inertia of the load and system, the rotating or linear speed of the load, and the number of times the load is to be stopped in a given time period. The rate of energy dissipation is expressed in horsepower seconds per minute (hpsec/min). Other common units for energy rates, such as foot pounds per second (ftlb/sec), can be converted to hp-sec/min using the conversion factors given in the *Technical Data* section.

Refer to the Thermal Capacity Chart for use above $104^{\circ}F$ (40°C) ambient temperature.

For applications demanding optimum brake performance, such as high inertial loads and frequent stops, the rate of energy dissipation required by the system is determined using the following formulas. The calculated rate of energy dissipation should not exceed the thermal capacity of the brake. Thermal dissipation requirements exceeding the brake's rating may result in overheating of the brake to a point where torque falls appreciably. The friction material of the brake could glaze, carbonize or fail.

For rotating or linear loads, the rate at which a brake is required to absorb and dissipate heat when frequently cycled is determined by the relationship:

$$TC = \frac{Wk_{f}^{2} \times N_{B}^{2} \times n}{3.2 \times 10^{6}}$$

Where, TC = Thermal capacity required for rotating or linear loads

for rotating or linear loads hp-sec/min

- Wk_T^2 = Total system inertia reflected to brake, Ib-ft²
- N_B = Shaft speed at brake, rpm
- n = Number of stops per minute, not less than 1
- 3.2 x 10⁶ = Constant

The rotating speed enters the formula as a squared function. Therefore, thermal requirements are of particular significance in systems where the brake will be operated at high speeds.

- $TC = \frac{E_T \times n}{550}$
- Where, TC = Thermal capacity required for overhauling loads hp-sec/min
 - E_T = Total energy brake absorbs, ft-lb
 - n = Number of stops per minute, not less than 1

550 = Constant

For overhauling loads, the rate at which a brake is required to absorb and dissipate heat when frequently cycled is determined by the relationship:

Example 11 illustrates how the required thermal capacity would be determined for Example 4.

Example 11: Determine the thermal capacity required to stop a rotating load frequently.

Referring back to Example 4, the flywheel will be stopped 20 times per minute. The required thermal capacity of the 6 lb-ft brake selected in this example is determined as follows.

The total inertial load the brake is to retard is 0.15 lb-ft². The shaft speed of the brake motor is 1,800 rpm. Therefore, the required thermal capacity is,

$$TC = \frac{Wk_1^2 x N_M^2 x n}{3.2 x 10^6}$$
$$= \frac{0.15 x 1,800^2 x 20}{3.2 x 10^6}$$

TC = 3.0 hp-sec/min

The 6 lb-ft brake selected in Example 4 should have a thermal capacity rating equal to or greater than 3.0 hp-sec/min.

A brake with greater thermal capacity will result in greater wear life.

If productivity is to be improved in Example 4 by increasing the cycle rate, the maximum number of stops per minute is determined by the rated thermal capacity of the brake. If the 6 lb-ft brake selected in Example 4 has rated thermal capacity of 9 hp-sec/min, the maximum permissible stops per minute would be determined by transposing the above formula to,

$$n_{max} = \frac{TC_{rated} \times (3.2 \times 10^6)}{Wk_1^2 \times N_M^2}$$
$$= \frac{9 \times (3.2 \times 10^6)}{0.15 \times 1,800^2}$$

 $n_{max} = 59$ stops/min

So, the brake could be operated up to 36 times per minute without exceeding its ability to absorb and dissipate the heat generated by the frequent stops and meet the maximum solenoid cycle rating. *Cycle rate cannot exceed the solenoid cycle rate appearing in the catalog.*

Electrical Considerations

Please see page 118.

Environmental Considerations

Brakes with standard open enclosures when mounted on NEMA C-face motors are drip-proof, except where a manual release lever has a clearance opening in the housing. The standard enclosure is commonly used on open, drip-proof and enclosed motors operating indoors or in protected outdoor environments.

NEMA 4, IP 54 enclosures are available on most brake models and are commonly used for outdoor installations, or where there are moist, abrasive or dusty environments. Standard and severe duty NEMA 4 enclosures are available in some brake series.

Brakes of various styles and materials for above or below deck on ships and dockside installation are available. The materials are usually specified by the ship designers or Navy specification MIL-B-16392C. Brakes are also available to meet MIL-E-17807B for shipboard weapon and cargo elevators. Refer to *Marine, Maritime and Navy Catalog* pages. Brakes Listed by Underwriters Laboratories, Inc. and certified by Canadian Standards Association are available for use in hazardous locations, including Class I. Groups C and D: and Class II, Groups E, F and G. Motormounted, hazardous-location electric disc brakes are listed only when mounted to a Listed hazardous-location motor of the same Class and Group at the motor manufacturer's facility, and where the combination has been accepted by UL or CSA. This procedure completes the hazardous duty assembly of the brake. However, foot-mounted hazardous-location disc brakes that are Listed are also available for coupling to a motor, and may be installed by anyone.

Hazardous-location brakes are *not* gasketed unless indicated in the brake description. The enclosure prevents flame propagation to the outside atmosphere through controlled clearances. Protection from weather and washdowns must be provided. If the brake is used in a high humidity or low temperature environment, internal electric heaters should be used.

Standard ambient temperature range for brake operation is from $20^{\circ}F(0^{\circ}C)$ to $104^{\circ}F(40^{\circ}C)$. Refer to *Thermal Ratings* section for brake operation at higher ambient temperatures. Heaters may be available for brake operation at low ambient temperatures and high humidity environments. Ductile iron construction and heaters are recommended for prolonged cold climate use.

Conclusion

The spring-set, electrically released disc brake is an important accessory to electric motors used in cycling and holding operations. It is available in a wide variety of enclosures. In most applications, a brake requires no additional wiring, controls or auxiliary electrical equipment. It is simple to maintain since the replaceable items, the friction discs, can be easily changed.

Many spring-set motor brakes are equipped with features such as simple wear adjustment to provide optimum friction disc life, visual wear indicator, torque adjustment and manual release. Featured on some types of brakes is automatic adjustment to compensate for friction disc wear. This feature eliminates the need for periodic adjustment and is advantageous in remote or inaccessible locations. Not all of the brakes on the market provide all of these features, but there are many Stearns motor brakes offering these features.

Care should be exercised in properly selecting a brake giving due consideration to torque as well as environment and thermal requirements. On applications where all the pertinent information is not available, selection must be based on previous experience of the designer and user, as well as the brake manufacturer, and should be confirmed by tests under actual operating conditions. If the brake is selected with reasonable allowances made for extremes in operating conditions, it will perform its task with little attention or maintenance.

Formulas

The following formulas cover the basic calculations used in brake application engineering.

Required	Given	Formula
Full load motor torque (T _{flmt}), lb-ft	Horsepower (P), hp Shaft speed (N), rpm 5252 = Constant	$T_{fint} = \frac{5252 \times P}{N}$
Average dynamic braking torque (T _d), lb-ft	Total inertia reflected to brake (Wk ²), lb-ft ² Shaft speed at brake (N), rpm Desired stopping time (t), seconds 308 = Constant	$T_{d} = \frac{Wk^{2} \times N}{308 \times t}$
Static torque (T), lb-ft	Force (F), lb Pulley or drum radius, (R), ft	T = F x R
Overhauling dynamic torque reflected to brake shaft (T _o), lb-ft	Weight of overhauling load (W), lb Linear velocity of descending load (V), ft/min Shaft speed at brake (N), rpm 0.158 = Constant	$T_{o} = \frac{0.158 \times W \times V}{N}$
Static torque of brake (T _s), lb-ft	Dynamic braking torque required (T_d) , lb-ft	$T_{s} = \frac{T_{d}}{0.8}$
(General Guideline)	0.8 = Constant (derating factor)	0.8
Inertia of rotating load reflected to brake shaft ($_W\ k_b^2$), lb-ft^2	Inertia of rotating load ($W \ge L^2_L$), Ib-ft ² Shaft speed at load (N _L), rpm Shaft speed at brake (N _B), rpm	Equivalent $W k_b^2 = W k_L^2 \left(\frac{N_L}{N_B} \right)^2$
Equivalent inertia of linear moving load reflected to brake shaft ($_W\ k_w^2$), lb-ft^2	Weight of linear moving load (W), lb Linear velocity of load (V), ft/min Shaft speed at brake (N _B), rpm 2π : = Constant	Equivalent $Wk_{W}^{2} = W \left(\frac{V}{2 \pi N_{B}}\right)^{2}$
Kinetic energy of rotating load, (KE _r), ft-lb	Inertia of rotating load reflected to brake shaft ($_{W} k_{b}^{2}$), lb-ft ² Shaft speed at brake (N _B), rpm 5875 = Constant	$KE_r = \frac{W k_b^2 \times N_B^2}{5875}$
Kinetic energy of linear moving load (KE _I), ft-lb	Weight of load (W), lb Linear velocity of load (v), ft/sec g = Gravitational acceleration constant, 32.2 ft/sec ²	$KE_{I} = \frac{W v^{2}}{2g}$
Change in potential energy (PE), ft-lb	Weight of overhauling load (W), lb Distance load travels (s), ft	PE = Ws
Total energy absorbed by brake (E_T) , ft-lb	Total linear kinetic energy, (KE _L), ft-lb Total rotary kinetic energy (KE _R), ft-lb Potential energy converted to kinetic energy (PE), ft-lb	E _T = KE _L + KE _R + PE
Thermal capacity required for rotational or linear moving loads (TC), hp-sec/min	Total system inertia reflected to brake shaft (Wk $_{T}^{2}$), lb-ft ² Shaft speed at brake (N _B), rpm Number of stops per minute (n), not less than one 3.2 x 10 ⁶ = Constant	$TC = \frac{W k_T^2 \times N_B^2 \times n}{32 \times 10^6}$
Thermal capacity required for overhauling loads (TC), hp-sec/min	Total energy brake absorbs (E _T), ft-lb Number of stops per minute (n), not less than one 550 = Constant	$TC = \frac{E_T \times n}{550}$
Linear velocity, ft/min	N = rpm Diameter (D), ft	$V = N\pi D$