Important
Please read these instructions carefully before installing, operating, or servicing your Stearns brake. Failure to comply with these instructions could cause injury to personnel and/or damage to property if the brake is installed or operated incorrectly. For definition of limited warranty/liability, contact Rexnord Industries, Inc., Stearns Division, 5150 S. International Dr., Cudahy, WI 53110, (414) 272-1100.

Caution
1. Installation and servicing must be made in compliance with all local safety codes including Occupational Safety and Health Act (OSHA). All wiring and electrical connections must comply with the National Electric Code (NEC) and local electric codes in effect.
2. Do not install the brake in atmospheres containing explosive gases or dusts.
3. To prevent an electrical hazard, disconnect power source before working on the brake. If power disconnect point is out of sight, lock disconnect in the off position and tag to prevent accidental application of power.
4. Make certain power source conforms to the requirements specified on the brake nameplate.
5. Be careful when touching the exterior of an operating brake. Allow sufficient time for brake to cool before disassembly. Surfaces may be hot enough to be painful or cause injury.
6. Do not operate brake with housing removed. All moving parts should be guarded.
7. Installation and servicing should be performed only by qualified personnel familiar with the construction and operation of the brake.
8. For proper performance and operation, only genuine Stearns parts should be used for repairs and replacements.
9. After usage, the brake interior will contain burnt and degraded friction material dust. This dust must be removed before servicing or adjusting the brake.
DO NOT BLOW OFF DUST using an air hose. It is important to avoid dispersing dust into the air or inhaling it, as this may be dangerous to your health.

a) Wear a filtered mask or a respirator while removing dust from the inside of a brake.
b) Use a vacuum cleaner or a soft brush to remove dust from the brake. When brushing, avoid causing the dust to become airborne. Collect the dust in a container, such as a bag, which can be sealed off.
10. Do not lubricate any parts of the brake.
11. Do not adjust brake torque. The nominal static torque is factory pre-set and should not be altered.

General Description
The 87,X00 Series is a spring-set, electrically released disc brake for controlled stopping and holding of a load. It is self-adjusting for friction disc wear and mounts directly to a NEMA C-face motor.

I. Installation Procedure
A. Remove housing nuts (15) and housing (7).
B. Depress solenoid plunger (29) and wire tie plunger (29) to frame (79).
C. Remove entire support plate assembly (142) by evenly unscrewing screws (142S). Remove screws, conical spring washers, and flat washers.
D. Remove pressure plate (5), friction disc (4), and stationary disc (3).
Note 1: Brake with single friction disc do not have stationary discs (3). Vertically mounted brakes have special spring requirements. One disc vertical below brakes do not require springs. Refer to Instruction Sheet P/N 8-078-937-06 for proper assembly of vertical mounting components.
E. Attach endplate (2) to NEMA C-face of motor using four 1/2 diameter socket head cap screws (not supplied) torque per manufacturers specifications. (Head of cap screws must not project above friction surface.) If foot mounted, secure foot mounting bracket to foundation. The use of dowels to insure permanent alignment is recommended. Foot, machine or C-face mounted brakes must be carefully aligned within .004 on concentricity and face runout. Shaft runout should be within .002 T.I.R. Maximum permissible shaft endfloat is .020.

Note 2: If motor is to be ceiling mounted after assembly, entire brake will have to be rotated 180 or upside down so it will be positioned with solenoid plunger (29) above frame when final assembly is mounted on ceiling. Similarly, for horizontal wall mounting, rotate 90.
Note 3: A dimple drilled into the motor shaft for the hub set screw (165S), 90° from the key is recommended for vertical mounting.

F. Position hub and tight fitting key (not supplied) 3/4" from outer register face of motor end bell. Torque both 3/8" set screws to 290 lb-in.

If brake utilizes vertical mounting springs, do not assemble them when measuring for hub location.

G. Reassemble friction disc (be sure friction discs slide freely), springs (if vertical), stationary discs, and pressure plate in correct sequence and position. All parts must slide freely.

H. Mount support plate assembly, torque screws to 50 lb-in in endplate. Conical spring washer installed under the screw head. Flat washer used under the conical spring washer only with aluminum support plate. Be sure that assembly is mounted with the solenoid in a vertical position (plunger above frame) as shown when brake is horizontal. If the self-adjust assembly has allowed the mechanism to over-adjust, it will have to be reset before mounting support plate. In this case, the lever arm (17) throat will be near, or touching, the pinion (32) teeth. Refer to Figure 6 and Self-adjust Maintenance.

Loosen pressure spring cap screw (19) until pressure spring (11) is free, mount support plate assembly to endplate and retighten spring cap screw until snug. Do not overtighten! Torque to a maximum of 96 lb-in.

I. Manually lift solenoid plunger to maximum travel, and release. Complete electrical connection. (See Section on Electrical Connection of Brake.) Depress solenoid plunger manually or electrically, and allow it to snap up. Repeat this process several times to set air gap on solenoid. (Check Self-adjust Maintenance Section for proper gap measurement, or corrective action of improper gap.)

J. Install new housing gasket; replace housing; install new o-rings under housing nuts and tighten housing nuts to 50 lb-in.

II. Electrical Connection of Brake

CAUTION 1: Inverter Motor and Special Control Systems. This brake contains either a single phase AC coil or DC coil that requires instantaneous power within ~10% of rating at the coil. A separate power source is required when this brake is used in conjunction with a motor or control system that limits voltage or current input (i.e. inverter motors) or causes a ramping of the power supply.

CAUTION 2: Class H coils with terminals. Do not bend lead wire crimp connection as this causes a fatigue in the metal which may break under vibration.

Note 1: Brake coil connections described here cover common motor connections. For nonstandard motor or control connections, contact respective supplier or Stearns Division.

Note 2: Be sure lead wires to coil are not tight or pinched, and that leads will not be rubbed by friction disc, trapped between solenoid plunger and frame, caught between lever arm and endplate, or by linkage.

A. AC coils, single or dual voltage

1. Dual voltage coils may be factory preconnected for high voltage with wire nuts. Checking coil connection is suggested. Four lead style are marked on leads for connection per Figure 2. Two unmarked leads mean preconnection made for high voltage. Reconnect coil for appropriate voltage as shown in Figure 2. Bring out line leads.

AC Voltage Coil Connection

<table>
<thead>
<tr>
<th>Class H Coil (colored)</th>
<th>Class B Coil (black)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Power Line A Power Line B Tie Leads
Low voltage 1 and 3 2 and 4
High voltage 1 2 3 and 4

2. On single voltage coils, connect coil to any two leads on single or three-phase motors of the same voltage as the brake. Refer to brake nameplate and coil number for correct voltage and frequency. See Figure 2 for dual voltage coil connection and connect to any two leads of single or three-phase motor of the same voltage. The brake can also be wired to external switch contacts providing proper voltage other than that used to control the motor. Normally, the motor and brake contacts are interlocked.

B. Connecting AC solenoid coils on dual voltage 230/460 three-phase motors

To use a 230 volt coil (or a 230/460 dual voltage coil connected for 230 volts) with a 230/460 dual voltage three-phase motor, the brake leads are connected across two motor terminals as shown in Figures 3 and 4 or other equivalent combinations. If a 230 volt brake coil is connected as shown in Figures 3 and 4 the motor can be operated on either 230 volts or 460 volts with no adverse effect on brake operation.

The gap is determined by the position of wrap spring stop (76). The normal operating gap is 7/16" (22 mm) to 15/16" (24 mm). Should this change, follow the steps listed:

1. If (stop) screws (76S) had been loosened and retightened, the air gap may require resetting. The gap is measured between mating surfaces of plunger (2) and...
solenoid frame (79), and may be increased by raising slightly, or decreased by lowering slightly, wrap spring stop (76). Be sure to retighten (stop) screws (76S) to 50 lb-in. Manually lift plunger to maximum travel and release. Depress plunger, manually or electrically, and allow it to snap up. Repeat several times, then recheck air gap. (For vertically mounted brakes refer to Note in Section III under Item C).

2. Tang of wrap spring (71) must be below, and must make contact with, wrap spring stop (76) when solenoid lever (28) is manually raised. If stop is bent outward, allowing tang to bypass it, rebend to square position, assemble correctly, and reset solenoid air gap as described in Paragraph 1.

3. Check condition and positioning of pinion (32) and rack (part of lever arm assembly, 17). Replace assembly as necessary with complete assemblies. See following Sections.

D. Solenoid lever and pinion assembly replacement
If pinion (32) teeth are worn, replace entire assembly (8). Consult appropriate parts list for kit number. Check sector gear of lever arm (17) for wear.

E. Lever arm replacement - Series 87,000
If gear teeth of lever arm (17) are worn, replace entire lever arm assembly available as a kit from appropriate repair parts list. Also check pinion (32) teeth for wear. Ref. Item 8.

IV. Troubleshooting
A. If brake does not stop properly or overheats, check the following:
1. Friction discs may be excessively worn, charred or broken.
2. Hub may have become loose and shifted on shaft.
3. Is hub clean and do friction discs slide freely.
4. Are controls which govern start of braking cycles operating properly?
5. Are limit switches, electric eyes, etc. functioning properly?
6. On vertically mounted brakes, are springs in place of disc pack? See P/N 8-078-937-06.
7. If brake is floor mounted, check alignment. See Section I, Step E.
8. Pressure spring may be improperly assembled or broken.
10. Check linkage for binding. The approximate pressure applied to the top of the solenoid link to move plunger is:

<table>
<thead>
<tr>
<th>Coil Type</th>
<th>Pressure (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5 coil</td>
<td>3 lbs</td>
</tr>
<tr>
<td>#6 coil (15 lb-ft)</td>
<td>5-1/2 lbs</td>
</tr>
<tr>
<td>#6 coil (25 lb-ft)</td>
<td>9 lbs</td>
</tr>
<tr>
<td>#8 coil</td>
<td>16 lbs</td>
</tr>
</tbody>
</table>

11. Solenoid lever stop (22) must be in place on support plate.
12. Solenoid may not be energizing and releasing the brake. Check voltage at the coil and compare to the coil and/or nameplate voltage rating.
13. A voltage drop may be occurring. If excessive drop in voltage is noted, check wire size of power source. Correct as needed.

Note: A method to check voltage at coil is to insert a block of wood of the approximate thickness of the solenoid air gap between the solenoid frame and plunger. (The block will prevent brake from releasing when coil is energized.) Connect voltmeter leads at the coil terminals or lead wires. Energize coil. Voltmeter needle will not fluctuate and reading can be taken. Reading should be taken immediately and the coil de-energized to prevent overheating of the coil. Compare voltage reading with coil rating.

14. Check slots of endplate for wear at the areas where stationary discs are in contact. Grooves in the slots can cause hang-up or even breakage of each of stationary discs. If grooving is noted, replace endplate.
15. Check that heads of mounting bolts do not extend above wear surface of endplate.
16. On vertical brakes be sure springs are installed in proper order. See P/N 8-078-937-06.
17. Check pressure spring length to insure correct compressed height. Original spring lengths are given in the following Table so that correct setting may be verified and corrected if necessary. With worn friction discs, add amount of wear to the approximate spring length shown.

<table>
<thead>
<tr>
<th>Torque (lb-ft)</th>
<th>Compressed Spring Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3-17/32 (90 mm)</td>
</tr>
<tr>
<td>15</td>
<td>3-9/16 (91 mm)</td>
</tr>
<tr>
<td>25</td>
<td>3-3/8 (86 mm)</td>
</tr>
<tr>
<td>35</td>
<td>3-3/8 (86 mm)</td>
</tr>
<tr>
<td>50</td>
<td>3-3/8 (86 mm)</td>
</tr>
<tr>
<td>75</td>
<td>3-3/8 (86 mm)</td>
</tr>
<tr>
<td>105</td>
<td>3-3/8 (86 mm)</td>
</tr>
</tbody>
</table>

18. If stopping time is more than two seconds (rule of thumb) and/or the application is more than five stops per minute, check thermal requirements of load versus thermal rating of brake.
B. If brake hums, solenoid pulls in slowly, or coil burns out, check the following:

1. Voltage supply at coil versus coil rating.
3. Shading coils may be broken.
4. Plunger guides may be excessively worn. Does solenoid plunger rub on solenoid frame laminations? If so, replace plunger guides.
5. Solenoid frame and plunger may be excessively worn.
6. Is solenoid dirty?
7. Solenoid mounting screws may have become loose, causing frame to shift and plunger to seat improperly.
8. Sector gear and pinion teeth may be jamming due to excessive tooth wear.

C. If brake is noisy during stopping:

1. Check mounting face runout, mounting rabbet eccentricity and shaft runout. See Installation Procedure, Section I, Step E. Correct as required.
2. Check for signs of the outside diameter of the friction disc(s) rubbing on the inside diameter of the endplate. This would indicate brake is eccentric with respect to the motor shaft and/or the shaft is deflecting during a stop. Check alignment and shaft diameter. Also check for worn motor bearings. If realignment does not correct the problem, a larger diameter shaft may be required. Shaft deflection may also be caused by excessive overhang of brake from motor bearing. Additional shaft support may be required.
3. Check for bad motor bearings. Replace if necessary. Check for excessive shaft endfloat. Correct as required.