Important
Please read these instructions carefully before installing, operating, or servicing your Stearns brake. Failure to comply with these instructions could cause injury to personnel and/or damage to property if the brake is installed or operated incorrectly. For definition of limited warranty/liability, contact Rexnord Industries, LLC., Stearns Division, 5150 S. International Dr., Cudahy, WI 53110, (414) 272-1100.

Caution
1. Installation and servicing must be made in compliance with all local safety codes including Occupational Safety and Health Act (OSHA). All wiring and electrical connections must comply with the National Electric Code (NEC) and local electric codes in effect.
2. Do not install the brake in atmospheres containing explosive gases or dusts.
3. To prevent an electrical hazard, disconnect power source before working on the brake. If power disconnect point is out of sight, lock disconnect in the off position and tag to prevent accidental application of power.
4. Make certain power source conforms to the requirements specified on the brake nameplate.
5. Be careful when touching the exterior of an operating brake. Allow sufficient time for brake to cool before disassembly. Surfaces may be hot enough to be painful or cause injury.
6. Do not operate brake with housing removed. All moving parts should be guarded.
7. Installation and servicing should be performed only by qualified personnel familiar with the construction and operation of the brake.
8. For proper performance and operation, only genuine Stearns parts should be used for repairs and replacements.

Note: Brakes can have 3 or 4 friction discs (item 4), and 2 or 3 stationary discs (item 3), depending on model number.
9. After usage, the brake interior will contain burnt and degraded friction material dust. This dust must be removed before servicing or adjusting the brake. DO NOT BLOW OFF DUST using an air hose. It is important to avoid dispensing dust into the air or inhaling it, as this may be dangerous to your health.

 a) Wear a filtered mask or a respirator while removing dust from the inside of a brake.
 b) Use a vacuum cleaner or a soft brush to remove dust from the brake. When brushing, avoid causing the dust to become airborne. Collect the dust in a container, such as a bag, which can be sealed off.

10. Manual release does not reset automatically. When release has been used, it must be manually reset before operating the brake electrically.

11. Do not lubricate any parts of the brake.

12. Do not adjust brake torque. The nominal static torque is factory pre-set and should not be altered.

General Description

The 82,000 Series is a spring-set, electrically released disc brake for controlled stopping and holding of a load. It is self-adjusting for friction disc wear and mounts directly to a NEMA C-face motor with 12-1/12’’ (AK) register and an 11” (AJ) bolt circle, machine with same register or Stearns foot mounting bracket.

Operation

Each brake assembly consists of three or four molded friction discs fitted over a splined hub attached to and driven by a motor shaft. The friction discs are located alternately between an endplate, stationary disc(s) and a pressure plate. The stationary disc(s) and pressure plate are restrained from rotating through splines in the endplate. A solenoid, lever system, and a pressure spring are located on a support plate. A solenoid plunger and frame, caught between friction disc, trapped between rubbing by friction disc, trapped between tight or pinched, and that leads will not be rubbed by friction disc, trapped between solenoid plunger and frame, caught between lever arm and endplate, or by linkage. Be sure lead wires to coil are not tight or pinched, and that leads will not be rubbed by friction disc, trapped between solenoid plunger and frame, caught between lever arm and endplate, by linkage.

I. Installation Procedure

(See Figure 1)

Note 1: For optimum results, position brake so that solenoid plunger (29) is above the frame (79) when installed. The brake may be mounted horizontally with the solenoid plunger above the frame, or if specifically modified, vertically above or vertically below the motor. If motor is to be ceiling or horizontally wall mounted, brake must be oriented so the brake plunger is above frame when motor is installed.

A. Remove terminal box cover and remove excess wire from terminal box.

B. Unscrew housing screws and washers (15 and 15W) and remove housing (7).

C. Depress solenoid plunger (29) and wire tie plunger to the solenoid frame (79).

D. Remove entire support plate assembly (142) by evenly unscrewing and removing screws and lock washers (142S and 142W).

E. Remove pressure plate (5), friction discs (4) and stationary disc(s) (3).

Note 2: Vertically mounted brakes will have separate springs. Note color coded sequence of springs, or refer to Instruction P/N 8-078-932-06 for proper assembly.

F. Position hub (16) and key (not supplied) on the motor shaft so that face of hub will protrude outboard approximately 3/32” (2 mm) to 1/8” (3 mm) beyond the face of the last outboard friction disc. (Position may be determined by assembling friction discs and stationary disc(s) onto hub, noting hub position, and removing discs.) If brake utilizes vertical mounting springs, do not assemble them when measuring for hub location. On some applications, particularly in vertical position, a set screw dimple drilled into shaft is recommended. Tighten two hub set screws (16S).

G. Torque set screws to 620 in-lb (70 Nm)

H. Assemble friction discs and stationary disc(s) alternately. Pressure plate completes disc pack assembly.

Note 3: Friction discs should be free to slide on hub and the stationary disc(s) and pressure plate should be free to slide in endplate.

I. Mount support plate assembly drawing screws down evenly. Be sure the assembly is mounted with the solenoid plunger above the solenoid frame on horizontally installed brakes. (See Installation, Note 1.) Torque screws with lock washers to 85-100 lb-in.

Note 4: If the self-adjust assembly has allowed the mechanism to over-adjust, it will have to be reset before mounting the support plate. In this case the lever arm (17) throat will be near, or touching, the pinion (32) teeth. Loosen pressure spring nut (19) until pressure spring (11) is free. Mount support plate and retighten spring nut until snug. Torque to 50 lb-ft (68 Nm). Lift plunger to maximum travel and release.

J. Manually depress solenoid plunger into the solenoid frame and release. Repeat this process several times to set solenoid air gap. (Check Self-adjust Maintenance Section for proper air gap measurement or corrective action for loss of gap.)

K. Connect all internal electrical hardware. (See Figure 4.)

L. Check that friction disc rotates freely when the solenoid plunger is held firmly against the solenoid frame. If binding or sticking occurs recheck Steps E, F & G.

M. Replace housing, screws, lock washers, and manual release knob. On DTWP install gaskets provided.

II. Electrical Connection of Brake

CAUTION 1: Inverter Motor and Special Control Systems. This brake contains either a single phase AC coil or DC coil that requires instantaneous power within ± 10% of rating at the coil. A separate power source is required when this brake is used in conjunction with a motor or control system that limits voltage or current input (i.e., inverter motors) or causes a ramping of the power supply.

CAUTION 2: Class H coils with terminals. Do not bend lead wire crimph connection as this causes a fatigue in the metal which may break under vibration.

Note 1: Brake coil connections described here cover common motor connections. For non-standard motor or control connection, contact respective supplier or Stearns Division.

Note 2: Be sure lead wires to coil are not tight or pinched, and that leads will not be rubbed by friction disc, trapped between solenoid plunger and frame, caught between lever arm and endplate, or by linkage.

Note 3: On brake with space heater, connect to appropriate power source. Heater is to be energized continuously, even during storage, if rusting may occur.

Note 4: For electrical release of brake, i.e., for solenoid to properly pull-in, apply full rated solenoid coil voltage by the closing of a switch. DO NOT increase voltage to coil slowly as this would cause the solenoid pull-in winding to overheat due to the extended pull-in time.

A. AC coils

On single voltage coils, connect coil to any two leads on three-phase motors of the same voltage as the brake. Refer to brake nameplate and coil number for correct voltage and frequency. The brake can also be wired to external switch contacts providing proper voltage other than that used to control the motor. Normally, the motor and brake contacts are interlocked.
B. Connecting Space Heaters

Space heaters should be powered from a power source separate from the brake circuit to allow for continuous operation, even when the brake/motor power supply is shut off. Supply power must be 50/60 Hz frequency.

Note: Heaters that are connected in series (Figure 2) must have resistance measurements that are within 5% of each other.

![Figure 2](image)

<table>
<thead>
<tr>
<th>SERIES CONNECTION (230V)</th>
<th>PARALLEL CONNECTION (115V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = H1</td>
<td>1 = H1 YELLOW</td>
</tr>
<tr>
<td>2 = H2</td>
<td>2 = H2 YELLOW</td>
</tr>
<tr>
<td>3 = S1</td>
<td>3 = S1 BLUE</td>
</tr>
<tr>
<td>4 = S2</td>
<td>4 = S2 BROWN</td>
</tr>
<tr>
<td>5 = S3</td>
<td>5 = S3 SPARE</td>
</tr>
<tr>
<td>6 = B1</td>
<td>6 = B1 BLACK</td>
</tr>
<tr>
<td>7 = B2</td>
<td>7 = B2 BLACK</td>
</tr>
<tr>
<td>8 = 1</td>
<td>8 = 1 RED</td>
</tr>
<tr>
<td>9 = 2</td>
<td>9 = 2 RED</td>
</tr>
<tr>
<td>10 = P1 BLK-COMMON</td>
<td>10 = P1 BLK-COMMON</td>
</tr>
<tr>
<td>11 = P2 BLK-N.O.</td>
<td>11 = P2 BLK-N.O.</td>
</tr>
</tbody>
</table>

Figure 4

III. General Maintenance

Inspection of brake is recommended at 100-125 hours of running time. Inspection should include air gap setting, switch actuation gaps, condition of disc pack components and seal points.

Warning! Any mechanism or load held in position by the brake should be secured to prevent possible injury or damage to equipment before any disassembly of the brake is attempted or the manual release knob or lever is operated on the brake. Observe all cautions listed at the beginning of this manual.

Note 1: Gaskets should be inspected each time the housing is removed. Gaskets with cuts, tears, imbedded foreign material, or have hardened due to aging, must be replaced.

Note 2: Gasketed surfaces must be clean from all industrial fluids and particles of dirt that could interfere with a good seal of the brake.

Note 3: Do not lubricate any part of the brake as this may cause a malfunction and/ or a loss of torque.

A. Coil replacement

1. Unscrew manual release knob (148), brake as this may cause a malfunction and/or adjust the backlash between the rack and pinion.
2. Remove retaining ring (152R) and washer type bearing (138A) from stud pin (76S), pivot pin (130) and lever arm (17). Remove two set screws (17S) and eccentric sleeve (17E) from lever arm.
3. Install new coil (12A) into solenoid frame with same relative position as old coil. Install coil with lead wires upward on solenoid frame. The air gap is determined by the position of the wrap spring stop (76). The air gap is measured between mating surfaces of plunger and solenoid frame. See Figure 1.

B. Renewal of friction discs

Notes: Friction Disc Wear: (see wear indication on page 7)
1. Follow Steps A through D of the Installation Procedure.
2. Follow Steps G through M of the Installation Procedure.

C. Self-adjust maintenance

The solenoid is factory set with a 1-3/8" (35 mm) air gap, requires no resetting, even when changing friction discs. The air gap is determined by the position of the wrap spring stop (76). The air gap is measured between mating surfaces of plunger and solenoid frame. See Figure 1.

1. Tang of wrap spring (71) must be below position move lever arm back and forth to determine backlash.
2. If (stop) screws (76S) had been loosened and tightened, the air gap may require resetting. The air gap may be increased by raising slightly, or decreased by lowering slightly, wrap spring stop (76). Be sure to retighten (stop) screws (76S). Manually lift plunger to maximum travel and release. Depress plunger, manually or electrically, and allow it to snap up. Repeat several times, then recheck air gap.
3. Should air gap have changed, inspect position of the wrap spring stop and adjust air gap as follows:
 1. Tang of wrap spring (71) must be below and must make contact with wrap spring stop when solenoid lever (28) is manually lifted to a maximum position. If wrap spring stop (76) is bent outward, allowing tang to bypass it, rebind to a square position and assemble correctly.
 2. If (stop) screws (76S) had been loosened and retightened, the air gap may require resetting. The air gap may be increased by raising slightly, or decreased by lowering slightly, wrap spring stop (76). Be sure to retighten (stop) screws (76S). Manually lift plunger to maximum travel and release. Depress plunger, manually or electrically, and allow it to snap up. Repeat several times, then recheck air gap.

D. Renewal of friction discs

Notes: Friction Disc Wear: (see wear indication on page 7)
1. Follow Steps A through D of the Installation Procedure.
2. Follow Steps G through M of the Installation Procedure.

C. Self-adjust maintenance

The solenoid is factory set with a 1-3/8" (35 mm) air gap, requires no resetting, even when changing friction discs. The air gap is determined by the position of the wrap spring stop (76). The air gap is measured between mating surfaces of plunger and solenoid frame. See Figure 1.

1. Tang of wrap spring (71) must be below position move lever arm back and forth to determine backlash.
2. If (stop) screws (76S) had been loosened and tightened, the air gap may require resetting. The air gap may be increased by raising slightly, or decreased by lowering slightly, wrap spring stop (76). Be sure to retighten (stop) screws (76S). Manually lift plunger to maximum travel and release. Depress plunger, manually or electrically, and allow it to snap up. Repeat several times, then recheck air gap.
3. Should air gap have changed, inspect position of the wrap spring stop and adjust air gap as follows:
 1. Tang of wrap spring (71) must be below and must make contact with wrap spring stop when solenoid lever (28) is manually lifted to a maximum position. If wrap spring stop (76) is bent outward, allowing tang to bypass it, rebind to a square position and assemble correctly.
 2. If (stop) screws (76S) had been loosened and retightened, the air gap may require resetting. The air gap may be increased by raising slightly, or decreased by lowering slightly, wrap spring stop (76). Be sure to retighten (stop) screws (76S). Manually lift plunger to maximum travel and release. Depress plunger, manually or electrically, and allow it to snap up. Repeat several times, then recheck air gap.

D. Renewal of friction discs

Notes: Friction Disc Wear: (see wear indication on page 7)
1. Follow Steps A through D of the Installation Procedure.
2. Follow Steps G through M of the Installation Procedure.

C. Self-adjust maintenance

The solenoid is factory set with a 1-3/8" (35 mm) air gap, requires no resetting, even when changing friction discs. The air gap is determined by the position of the wrap spring stop (76). The air gap is measured between mating surfaces of plunger and solenoid frame. See Figure 1.
Complete assembly of brake by following Steps K through M of Installation Procedure.

IV. Troubleshooting

A. If brake does not stop properly, coasts, or overheats:
1. Check that manual release lever is not in released mode.
2. Check for excessively worn, charred or broken friction discs.
3. Check that hub has not loosened and shifted on motor shaft.
4. Check that friction discs slide freely over hub. Clean hub and/or file burrs and nicks if required.
5. Check that stationary disc(s) and/or pressure plate can move freely in endplate and that they are not warped from overheating.
6. Check endplate splines for wear in the areas where stationary disc(s) and/or pressure plate make contact. Grooves in splines can prevent free disc movement and result in torque loss or friction disc breakage.
7. Check that pressure spring nut (19) is tight against the spacer.
8. Check solenoid air gap and other Items per Self-adjust Maintenance, Section III-C. Adjust if necessary.
9. Check that solenoid linkage can move freely. It requires approximately 28 lbs (12.7 kg) to seat solenoid plunger to frame on a correctly functioning brake.
10. Check voltage reading at coil terminals against coil voltage rating.
11. Check that brake coil is energized at the same time as, or prior to, motor and de-energized at the same time, or after, motor.
12. If stopping time exceeds 1 second, or if the application requires more than five stops per minute, check the thermal requirements to stop load against the thermal capacity of the brake.
13. If throat of lever arm (17) is near or touching pinion teeth (32), friction discs (4) are to be replaced.

B. If brake hums, solenoid pulls in slowly, or coil burns out:
2. Check if shading coils are broken.
3. Check for worn plunger guides or if plunger rubs on solenoid frame laminations.
4. Check for worn solenoid plunger and frame.
5. Check if solenoid is dirty.
6. Check if solenoid mounting screws have loosened.
7. Check for worn or binding linkage. For normal pressure required to seat solenoid plunger to frame see A-10.
8. Check for excessive voltage drop in motor line when motor is started. Check wire gauge of supply line against motor starting current and solenoid inrush current. Measure voltage drop at solenoid coil terminals during maximum inrush current condition. To accomplish this, insert a block of wood, or other non-magnetic materials, between solenoid plunger and frame. Block thickness should approximately equal solenoid air gap. Energize motor and brake simultaneously, take reading and immediately shut down. This is to prevent motor, brake, or solenoid burnup.

C. If brake is noisy during stopping and/or friction discs shatter:
1. Check for worn motor bearings allowing shaft runout.
2. On foot mounted brakes, recheck alignment.
3. On either style brake, check hub position on shaft. The outboard face of hub should protrude 3/32” (2 mm) to 1/8” (3 mm) beyond face of outboard friction disc.
4. On motor mounted style, check motor shaft endfloat. It should not exceed 0.020” (.5 mm).
5. On motor or machine mounted style, check concentricity of endplate and C-face register. See Installation Procedure, Note 2.
Thermal Switch

1. Locate the pressure plate in the endplate so that the thermal switch is 15° below horizontal for right-hand leadwire outlet, or 15° above horizontal for left-hand leadwire outlet.
2. Route wires so that they do not interfere with the disc pack movement.
3. Thermal switch must be tightly clamped to the pressure plate.

Proximity Switch

NOTES:
1. Assemble switch & brackets as shown.
2. Mount this assembly on two tapped holes in the support plate used for plunger support on vertical brakes.
3. Use threadlocker to secure bracket mounting screws and one side of proximity switch mounting nut.

Testing procedures (Proximity switch):
1. Depress plunger until it is seated against the frame.
2. Sensor face should be within .080-.090" (2.0 mm-2.3 mm) of target, use gauge block or shim.
3. Use a light bulb of 20 watts or greater, and of the same voltage rating as the line voltage. Put bulb in series with switch. (Either lead may be use). The sensor has a 20-250V AC input rating.
4. Switch does not need to be grounded.
5. Light emitting diode (LED) illuminates when power is supplied and the sensor is within range of target. Air gap should be between 1/4"-5/16" (6.3 mm-7.9 mm).
6. If air gap can not be achieved, loosen the two locking screws. Slide bracket upward to increase or down to decrease air gap. Sensor face should be within .085" +/- .015 (2.16 +/- .38 mm) of target. Tighten screws to 45-55 in-lb., then repeat step 5.
1. Heaters are wired in series or parallel depending on heater voltage.
2. Brake release indicator switch has NO/NC/COM terminals that are wired to the brake terminal block as shown in Step III-B, Figure 4.

Space heater connection

SERIES CONNECTION *(230V)*

PARALLEL CONNECTION *(115V)*

* at 50/60 Hz

Heater Connection by Model Number

<table>
<thead>
<tr>
<th>Series</th>
<th>Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-082-042-03-005</td>
<td>1-082-042-02-101</td>
</tr>
<tr>
<td>1-082-042-03-006</td>
<td>1-082-042-02-105</td>
</tr>
<tr>
<td>1-082-042-03-007</td>
<td>1-082-042-02-121</td>
</tr>
<tr>
<td>1-082-042-03-008</td>
<td>1-082-042-02-122</td>
</tr>
<tr>
<td>1-082-042-03-023</td>
<td>1-082-042-02-166</td>
</tr>
<tr>
<td>1-082-042-03-024</td>
<td>1-082-042-02-167</td>
</tr>
<tr>
<td>1-082-042-03-025</td>
<td>1-082-042-03-001</td>
</tr>
<tr>
<td>1-082-042-03-026</td>
<td>1-082-042-03-002</td>
</tr>
<tr>
<td>1-082-042-02-170</td>
<td>1-082-042-03-003</td>
</tr>
<tr>
<td>1-082-042-02-171</td>
<td>1-082-042-03-004</td>
</tr>
<tr>
<td>1-082-052-03-003</td>
<td>1-082-042-03-009</td>
</tr>
<tr>
<td>1-082-052-03-004</td>
<td>1-082-042-03-010</td>
</tr>
<tr>
<td>1-082-052-03-005</td>
<td>1-082-042-03-011</td>
</tr>
<tr>
<td>1-082-052-03-006</td>
<td>1-082-042-03-012</td>
</tr>
<tr>
<td>1-082-052-03-007</td>
<td>1-082-052-03-011</td>
</tr>
<tr>
<td>1-082-052-03-008</td>
<td>1-082-052-03-012</td>
</tr>
<tr>
<td>1-082-052-03-009</td>
<td>1-082-052-03-013</td>
</tr>
<tr>
<td>1-082-052-03-010</td>
<td>1-082-052-03-014</td>
</tr>
<tr>
<td>1-082-052-02-073</td>
<td>1-082-052-02-074</td>
</tr>
</tbody>
</table>
Visual Wear Indication

The disc pack should be replaced when the indicator rod has moved 0.375” (9.5mm). On these brakes, this is also visually marked with a paint line (see illustrations).

The disc pack wear that will have occurred at this point is approximately 0.150” (3.8mm).

For reference, the switch shown in these diagrams is not for wear indication - it is a brake release indicator switch.

Brake Release Indicator Switch

The brake release indicator switch should be positioned as shown above.