Series 86,000 (1-086-XXX)
Mounting Face: NEMA 444 and 445TC, TSC, UC or USC
16.0" AK, 14.0" AJ

Series 86,100 (1-086-1XX)
 Mounting Face: NEMA 505TC, TSC, UC or USC 16.5" AK, 14.5" AJ

Static Torque: 500 through $1000 \mathrm{lb}-\mathrm{ft}$

Enclosure Material: Cast Iron

Release Type: Knob, maintained with automatic reset Enclosure Protection: IP 23 \& 54 (formerly referred to by Stearns as NEMA type $2 \& 4$ respectively).
Mounting: Fanguard-mounted brakes requiring IP 54 protection may require additional sealing measures beyond seals provided with the brake - Refer to Installation \& Service Instruction sheets.
Installation, Service and Parts List: P/N 8-078-926-00
Additional 86,000 Specs: Double Solenoid Design Terminal Block Provided.

- Self-Adjusting Design
- Splined Hub
- Spring-Set Electrically Released
- Lead Wire Length: 36 inches
- Maximum Speed: 1800 rpm
- Coil Insulation: Standard Class B

Optional Class H

- Certified: CSA File LR-6254
- ABS Type Approval Certified

Modification required for vertical mounting, available through $750 \mathrm{lb}-\mathrm{ft}$ only.
See SAB Modifications for list price adders.

Dimensional Data/Unit Pricing (Discount Symbol C1)

Nominal Static Torque (lb-ft) (Nm)	Enclosure	Type	Basic Model Number and List Price (1) (2)		Dimensions in Inches(Dimensions in Millimeters)				Cast Iron Wt. Ibs (kg) (3)
					$\begin{gathered} \text { A } \\ \text { Cast } \\ \text { Iron } \end{gathered}$	AG	C	E	
$\begin{aligned} & \hline 500 \\ & (678) \end{aligned}$	IP 23	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|} \hline 1-086-X 21-02 \\ 1-086-X 25-02 \end{array}$	$\begin{aligned} & \$ 14,000.00 \\ & \$ 16,625.00 \end{aligned}$	$\begin{gathered} 13.31 \\ (338.14) \end{gathered}$	$\begin{gathered} \hline .75 \\ (19.05) \end{gathered}$	$\begin{gathered} \hline 1.50 \\ (38.10) \end{gathered}$	$\begin{gathered} \hline .94 \\ (23.81) \end{gathered}$	$\begin{gathered} \hline 310 \\ (141.0) \end{gathered}$
$\begin{gathered} 500 \\ (678) \\ \hline \end{gathered}$	IP 54	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|} \hline 1-086-\mathrm{X} 22-02 \\ 1-086-\mathrm{X} 26-02 \\ \hline \end{array}$	$\begin{aligned} & \hline 15,500.00 \\ & 18,125.00 \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 13.38 \\ (339.72) \\ \hline \end{array}$	$\begin{gathered} 1.69 \\ (42.86) \\ \hline \end{gathered}$	$\begin{gathered} 2.44 \\ (61.91) \end{gathered}$	-	$\begin{gathered} 320 \\ (145.0) \end{gathered}$
$\begin{gathered} 750 \\ (1017) \end{gathered}$	IP 23	$\begin{aligned} & \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|} \hline 1-086-X 31-02 \\ 1-086-X 35-02 \\ \hline \end{array}$	$\begin{aligned} & 15,500.00 \\ & 18,125.00 \\ & \hline \end{aligned}$	$\begin{gathered} 13.31 \\ (338.14) \\ \hline \end{gathered}$	$\begin{gathered} 1.12 \\ (28.58) \\ \hline \end{gathered}$	$\begin{array}{r} 2.25 \\ (57.15) \\ \hline \end{array}$	$\begin{array}{r} .94 \\ (23.81) \\ \hline \end{array}$	$\begin{gathered} 330 \\ (150.0) \end{gathered}$
$\begin{gathered} 750 \\ (1017) \end{gathered}$	IP 54	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1-086-X32-02 } \\ 1-086-X 36-02 \end{array}$	$\begin{aligned} & \hline 17,000.00 \\ & 19,625.00 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 13.38 \\ (339.72) \\ \hline \end{array}$	$\begin{gathered} 2.06 \\ (52.39) \end{gathered}$	$\begin{array}{r} 3.19 \\ (80.96) \\ \hline \end{array}$	-	$\begin{gathered} 340 \\ (154.0) \end{gathered}$
$\begin{gathered} 1000 \\ (1356) \end{gathered}$	IP 23	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 1-086-X41-02 } \\ 1-086-X 45-02 \end{array}$	$\begin{aligned} & \hline 17,000.00 \\ & 19.625 .00 \end{aligned}$	$\begin{array}{\|c\|} \hline 13.31 \\ (338.14) \\ \hline \end{array}$	$\begin{gathered} 1.50 \\ (38.10) \\ \hline \end{gathered}$	$\begin{gathered} 3.00 \\ (76.20) \\ \hline \end{gathered}$	$\begin{array}{r} \hline .94 \\ (23.81) \\ \hline \end{array}$	$\begin{gathered} \hline 350 \\ (159.0) \\ \hline \end{gathered}$
$\begin{gathered} 1000 \\ (1356) \\ \hline \end{gathered}$	IP 54	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1-086-X42-02 } \\ 1-086-X 46-02 \\ \hline \end{array}$	$\begin{array}{r} 18,500.00 \\ 21,125.00 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 13.38 \\ (339.72) \\ \hline \end{array}$	$\begin{gathered} 2.44 \\ (61.91) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 3.94 \\ (100.01) \\ \hline \end{array}$	-	$\begin{gathered} 360 \\ (164.0) \end{gathered}$

[^0]
Motor Frame Adapters

To adapt to NEMA Frame Size	AK. Dim	Reg. No.	Adapter Stock Number	Additional Shaft Length Required
	$\begin{gathered} \text { in. } \\ (m m) \end{gathered}$			$\begin{aligned} & \text { in. } \\ & (m m) \end{aligned}$
324TC, 326TC, 364TC, 365TC, 404TC or 405TC	$\begin{gathered} 12.50 \\ (317.50) \end{gathered}$	-13	$\begin{array}{\|c} 5-55-6041-00 \\ \text { List } \$ 2800 \end{array}$	$\begin{gathered} 1.38 \\ (34.92) \end{gathered}$

For adapter dimensions, see Technical Data.

Engineering Specifications*

Nominal Static Torque	No. of Friction Discs	Solenoid Size (1)-ft		AC	Maximum Solenoid (Nm)		

* All specifications are also applicable to the 86,100 Series.
(1) Two required.
(2) Maximum solenoid cycle rate is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ with 50% duty cycle. Does not relate to brake cycle rate (see Thermal Capacity).
(3) Thermal capacity rating is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$, stop time of one second or less, with no heat absorbed from motor. Derate thermal capacity by 25% for vertical mounting. Refer to "Selection Procedure" Section.

Current Ratings (amperes)

Coil Size	Voltage: 60 Hz						
	Current	$\begin{array}{r} 115 \\ \text { VAC } \end{array}$	$\begin{array}{r} 200 \\ \text { VAC } \end{array}$	$\begin{array}{r} 230 \\ \text { VAC } \end{array}$	$\begin{aligned} & 400 \\ & \text { VAC } \end{aligned}$	$\begin{aligned} & 460 \\ & \text { VAC } \end{aligned}$	$\begin{array}{r} 575 \\ \text { VAC } \end{array}$
K9	Inrush	100.	56.0	50.0	28.0	25.0	20.0
	Holding	4.4	2.4	2.2	1.2	1.2	. 8
	Voltage: 50 Hz						
	Current	$\begin{array}{r} 110 \\ \text { VAC } \end{array}$	$\begin{gathered} 220 \\ \text { VAC } \end{gathered}$	$\begin{array}{r} 380 \\ \text { VAC } \end{array}$			
	Inrush Holding	$\begin{array}{r} 72.0 \\ 3.2 \end{array}$	$\begin{array}{r} 48.0 \\ 1.8 \end{array}$	$\begin{array}{r} 25.0 \\ 1.2 \end{array}$	-	-	-
9	Voltage: DC						
	Current	$\begin{gathered} 24 \\ \text { VDC } \end{gathered}$	$\begin{gathered} 95 \\ \text { VDC } \end{gathered}$	$\begin{array}{r} 115 \\ \text { VDC } \end{array}$	$\begin{array}{r} 230 \\ \text { VDC } \end{array}$		
	Inrush Holding	112.8 1.4	29.8 .4	22.8 .2	11.8 .14	-	-

Ordering and Identification Information

The following example and tables provide information for selecting the appropriate three-letter suffix when ordering a Stearns Brake.

Example of a complete part number: 1-08	1-086-031-02-NLF _ Lead wire position (internal and external,
Designate 0 for 16 in. "AK", 14 in. "AJ"	-460 Vac
Designate 1 for 16.5 in. "AK", 14.5 in. "AJ"	J" 2-7/8 bore and 3/4 x 3/8 keyway

Hub Selection

Character	Bore (in.)	Keyway* (in. \mathbf{x} in.)
D	$2-1 / 8$	$1 / 2 \times 1 / 14$
H	$2-3 / 8$	$5 / 8 \times 5 / 16$
K	$2-5 / 8$	$5 / 8 \times 5 / 16$
L	$2-3 / 4$	$5 / 8 \times 5 / 16$
N	$2-7 / 8$	$3 / 4 \times 3 / 8$
P	3	$3 / 4 \times 3 / 8$
T	$3-3 / 8$	$7 / 8 \times 7 / 16$
V	$3-1 / 2$	$7 / 8 \times 7 / 16$
W	$1-7 / 8$	pilot bore
Z	4	$1 \times 1 / 2$

Maximum allowable bore 4.500 in.
For through-shaft applications, 4.000
is maximum.
Standard AC
Voltage Ratings

Character	Voltage	$\mathbf{H z}$
B	115	60
D	110	50
E	200	60
F	230	60
	190	50
H	220	50
L	460	60
	380	50
M	415	50
N	575	60

Direct Current

Character	Voltage
U	24
V	36
W	48
X	95
Y	115
Z	230

Contact factory if other
DC voltage is needed.

NOTE: For overhauling/high inertia loads, to stop in a specified time/distance, or for brakes combined with variable frequency drives, please refer to Application Engineering Section.

Stearns Solenoid Actuated Brakes can be easily selected from Table 1 and 2.
Given motor data:

1. Horsepower (hp)
2. Speed (RPM)
3. NEMA C-face frame size

Determine:

1. Static torque rating of the brake (lb-ft)
2. Brake series

Step 1 - Given the motor horsepower and speed, select the brake torque from Table 1. Torque in table 1 is calculated using formula:

$$
\mathrm{T}_{\mathrm{S}}=\frac{5,252 \times \mathrm{P}}{\mathrm{~N}} \times \mathrm{SF}
$$

Where, $\mathrm{T}_{\mathrm{S}}=$ Static torque, $\mathrm{lb}-\mathrm{ft}$

$$
\mathrm{P}=\text { Motor horsepower, hp }
$$

$N=$ Motor full load speed, rpm
SF = Service Factor
5,252 = constant
Example: Given a $5 \mathrm{hp}, 1800$ RPM motor, the selected brake is 20 or $25 \mathrm{lb}-\mathrm{ft}$.

Step 2 - Given the NEMA C-face motor frame size, select the brake series from Table 2.
Example: Given the $5 \mathrm{hp}, 1800$ RPM motor in Step 1 with a NEMA 184TC frame, Series 87,000 ; 87,300 or 87,700 Brakes can be selected to mount directly to the motor.

Table 1 - Torque Selection
In this table, brake torque ratings are no less than 140% of the motor full load torque.

Motor hp	Brakemotor Shaft Speed (RPM)						
	700	900	1200	1500	1800	3000	3600
	Static Torque Rating of Brake (lb-ft)						
1/6	3	1.5	1.5	1.5	0.75	0.5	0.5
1/4	3	3		1.5	1.5	0.75	0.5
1/3	6	3	3	3	1.5	1.5	0.75
1/2	6	6	3	3	3	1.5	1.5
$3 / 4$	10	6	6	6	6	3	3
1	15	10	6	6	6	3	3
1-1/2	20	15	10	10	10	6	3
2	25	20	15	10	10	6	6
3	35	25	20	15	15	10	6
5	75	50	35	25	20 or 25	15	10
7-1/2	105	75	50	50	35	25	15
10	105	105	75	50	50	25	25
15	175	125	105	75	75	50	35
20	230	175	125	105	105	50	50
25	330	230	175	125	105	75	50
30	330	330	230	175	125	75	75
40	440	330	330	230	175	105	105
50	550	440	330	330	230	*	
60	750	500	440	330	330	*	*
75	1000	750	500	440	330	*	
100	-	1000	750	500	440	*	*
125	-	1000	1000	750	500	*	*
150	-	-	1000	750	750	*	*
200	-	-	-	1000	1000	*	*
250	-	-	-	-	1000	*	*

*See catalog pages for maximum rpm by series. Thermal capacity must be considered in load stops over 1800 rpm.

Table 2 - Brake Series Selection by NEMA Frame Size

Torque Range (lb-ft)	Brake Series	C-Face Motor Frame Size											
		48C	56C	$\begin{aligned} & \text { 143TC } \\ & \text { 145TC } \end{aligned}$	$\begin{aligned} & \text { 182TC } \\ & \text { 184TC } \end{aligned}$	$\begin{aligned} & \text { 213TC } \\ & 215 \mathrm{TC} \end{aligned}$	$\begin{aligned} & \text { 254TC } \\ & \text { 254UC } \\ & \text { 256TC } \\ & \text { 256UC } \end{aligned}$	$\begin{aligned} & \text { 284TC } \\ & \text { 284UC } \\ & \text { 286TC } \\ & \text { 286UC } \end{aligned}$	$\begin{aligned} & \text { 324TC } \\ & \text { 324UC } \\ & \text { 326TC } \\ & \text { 326UC } \end{aligned}$	$\begin{aligned} & \text { 364TC } \\ & \text { 364UC } \\ & \text { 365TC } \\ & \text { 365UC } \end{aligned}$	404TC 404UC 405TC 405UC	$\begin{aligned} & \text { 444TC } \\ & \text { 444UC } \\ & \text { 445TC } \\ & \text { 445UC } \end{aligned}$	$\begin{gathered} \text { 504UC } \\ \text { 504SC } \\ \text { 505C } \\ \text { 505SC } \end{gathered}$
Manually-Adjusted Brakes (require periodic adjustment to compensate for friction disc wear)													
$\begin{aligned} & 1.5-6 \\ & 1.5-25 \\ & 10-25 \end{aligned}$	$\begin{aligned} & 48,100 \\ & 56, \times 00 \\ & 56,500 \end{aligned}$	(1)	(1)	(1)	(2)	(2)	(2)						
Self-Adjusting Brakes (automatically compensate for friction disc wear)													
$6-105$ $50-105$ $125-230$ $125-440$ $500-1000$ $500-1000$	$87, X 00$ 87,100 81,000 82,000 86,000 86,100		(3)	(3)	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & (1) \\ & (2) \\ & (2) \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \text { (1) } \\ & \text { (1) } \\ & \hline(2) \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \text { (1) } \\ & \text { (1) } \\ & \hline(2) \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \text { (1) } \\ & \text { (1) } \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & (2) \\ & (2) \\ & (1) \end{aligned}$	(1)
Division I Hazardous Location Brakes (for atmospheres containing explosive gases or ignitable dusts) / Motor Mounted													
$\begin{gathered} 1.5-15 \\ 10-105 \\ 125-330 \end{gathered}$	$\begin{aligned} & 65,300 \\ & 87,300 \\ & 82,300 \end{aligned}$		(1)	(1)	$\begin{aligned} & (2) \\ & (1) \\ & (2) \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \text { (1) } \\ & (2) \end{aligned}$	$\begin{aligned} & (2) \\ & (1) \\ & (2) \end{aligned}$	(2)	(2)	(2)	(2)	(2)	
Division I Hazardous Location Brakes (for atmospheres containing explosive gases or ignitable dusts) / Foot Mounted													
$\begin{gathered} 10-105 \\ 125-330 \end{gathered}$	$\begin{aligned} & \hline 87,300 \\ & 82,300 \end{aligned}$				(4)	(4)	(4)		(4)	(4)	(4)		
Division 2 Hazardous Location Brakes													
$\begin{aligned} & 1.5-25 \\ & 6-105 \end{aligned}$	$\begin{aligned} & \hline 56,800 \\ & 87,800 \end{aligned}$		$\begin{aligned} & 1 \\ & (3) \\ & (3) \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & (3) \end{aligned}$	$\begin{aligned} & (2) \\ & (1) \end{aligned}$	(2)	(2)	(2)	(2)	(2)	(2)		
Double C-Face Brake Couplers (for direct coupling a C-face motor to a C-face gear reducer)													
$\begin{aligned} & 1.5-25 \\ & 10-105 \end{aligned}$	$\begin{aligned} & 56,700 \\ & 87,700 \end{aligned}$		(1)	(1)	(1)	(1)	(1)						

(1) Brake mounts directly to motor C-face.
(2) Adapter required to mount brake to motor C-face. Refer to brake specifications for adapter information.
(3) Brake endplate modified for direct mounting to motor C-face without an adapter.
(4) Brake is foot mounted for coupling to a hazardous-location motor.

Installation and Service Instructions for 86,000 Series Self-Adjust Brakes

Typical Nameplate

IMPORTANT

Please read these instructions carefully before installing, operating, or servicing your Stearns Brake. Failure to comply with these instructions could cause injury to personnel and/or damage to property if the brake is installed or operated incorrectly. For definition of limited warranty/ liability, contact Rexnord Industries, LLC, Stearns Division, 5150 S. International Dr., Cudahy, WI 53110, (414) 272-1100.

Caution

1. Installation and servicing must be made in compliance with all local safety codes including Occupational Safety and Health Act (OSHA). All wiring and electrical connections must comply with the National Electric Code (NEC) and local electric codes in effect.
2. Use of this brake in atmospheres containing explosive gases and dusts must be in accordance with NEC article 501. This brake is not suitable for use in certain atmospheres containing explosive gases and dusts. HazLoc inspection authorities are responsible for verifying and authorizing the use of suitably designed and installed HazLoc equipment. When questions arise consult local Authority Having Jurisdiction (AHJ).
3. To prevent an electrical hazard, disconnect power source before working on the brake If power disconnect point is out of sight, lock disconnect in the off position and tag to prevent accidental application of power.
4. Make certain power source conforms to the requirements specified on the brake nameplate.
5. Be careful when touching the exterior of an operating brake. Allow sufficient time for brake to cool before disassembly. Surfaces may be hot enough to be painful or cause injury.
6. Do not operate brake with housing removed. All moving parts should be guarded.
7. Installation and servicing should be performed only by qualified personnel familiar with the construction and operation of the brake.
8. For proper performance and operation, only genuine Stearns parts should be used for repairs and replacements
9. After usage, the brake interior will contain burnt and degraded friction material dust. This dust must be removed before servicing or adjusting the brake.

DO NOT BLOW OFF DUST using an air hose. It is important to avoid dispersing dust into the air or inhaling it, as this may be dangerous to your health.
a) Wear a filtered mask or a respirator while removing dust from the inside of a brake
b) Use a vacuum cleaner or a soft brush to remove dust from the brake. When brushing, avoid causing the dust to become airborne. Collect the dust in a container, such as a bag, which can be sealed off
10. Caution! While the brake is equipped with manual releases to allow manual shaft rotation, the motor should not be run with the manual releases engaged, to avoid overheating the friction disc(s).

General Description

This series of brakes is spring-set, electrically released. They contain two to four rotating friction discs (4) driven by a hub (16) mounted on the motor or other shaft.

Note: Fan-guard mounted brakes requiring IP54 \& IP55 protection may require additional sealing measures beyond seals provided with this brake. Pressurized sprays aimed at the fan and brake hub surfaces can result in fluid migration along the motor shaft and keyway, and into the brake. The use of an appropriate sealant such as RTV or a forsheda seal is advised

Operating Principle

This series contain two or more friction discs (4) assembled alternately between the endplate (2) friction surface, stationary disc(s) (3) and pressure plate (5). The stationary components are restrained from rotating by being keyed into the endplate. With the brake released, all disc pack components are free to slide axially and the friction disc(s) to rotate.

Brake release occurs when the solenoid coils are electrically energized, causing the solenoid plungers to travel a specified distance and through a lever system, overcoming the pressure spring force. This action releases the clamping force on the disc pack, thereby allowing the friction disc(s) and brake hub to rotate.

Brake sets and torque is produced when electric current to the solenoid coils are interrupted, thereby collapsing the solenoid magnetic fields. The solenoid plungers return to their original de-energized position allowing the lever arms to move forward by virtue of the compressed torque springs. This action compresses the disc pack components which applies a retarding torque to the brake hub and ultimately restores the brake to a spring-set static condition.

Remove manual release knobs.
Remove housing screws.
Remove housing.

A. Push plungers down.
B. Pull manual releases to hold plungers.
C. Remove support plate screws.

A. Lift off support plate.
B. Remove retaining clips.
C. Remove disc pack and centralizing springs.

A. Position endplate on motor register
B. Insert four mounting bolts and tighten. (Torque per manufacturer specification)

A. Position hub on shaft so that the inner spline surface is flush with machined friction surface.
Torque to:1/2" diameter - 620 lb -in
5/8" diameter - $1325 \mathrm{lb}-\mathrm{in}$ $3 / 4$ " diameter -2300 lb -in
B. Reassemble disc pack in reverse order of removal.*
C. Reinstall retaining clips.
*For vertical brakes, refer to Service Instruction Sheet 8-078-936-05.

6
A. Route lead wires through conduit hole.
B. Position support plate on endplate.
C. Insert three mounting screws; tighten to $75-78 \mathrm{lb}-\mathrm{in}$.

AC coils are $50 / 60 \mathrm{hz}$, single phase rated. Power supply to coil must not have current or frequency limiting output that is less then the coil requirement. Voltage supply to the coil must be within $\pm 10 \%$ of nameplate rating.*

Caution: Keep
wiring away from pinch points.

Coils are wired in parallel with a jumper on the terminal strip on the support plate

[^1]

Power Source

Replace housing.
Tighten housing screws to 130 lb -in and release knob to $50 \mathrm{lb}-\mathrm{in}$.
clockwise

General Maintenance

Warning! Any mechanism or load held in position by the brake should be secured to prevent possible injury to personnel or damage to equipment before any disassembly of the brake is attempted or before the manual release knob or lever is operated on the brake. Observe all cautions listed at the beginning of this manual.
Note: Do not lubricate any part of the brake as this may cause malfunction and/or a loss of torque.

Troubleshooting

A. If brake does not stop properly, coasts or overheats:

1. Check that manual release knobs are not in released mode.
2. Check for excessively worn, charred or broken friction discs.
3. Check that hub has not loosened and shifted on motor shaft.
4. Check that friction discs slide freely over hub. Clean hub and/or file burrs and nicks if required.
5. Check that stationary disc(s) and/ or pressure plate can move freely in endplate and that they are not warped from overheating.
6. Check endplate slots for wear in the areas where stationary disc(s) and/or pressure plate make contact. Grooves in slots can prevent free disc movement and result in torque loss, stationary disc or friction disc breakage.
7. On vertically mounted brakes, check that springs are installed correctly and that stationary disc(s) can slide freely
over vertical mounting pins. Check for wear on plunger guide bracket.
8. Check that pressure spring nut (19) was properly tightened. Correct compressed spring height should be approximately 5-5/32" with new friction discs. Measurement is from top face of support plate to bottom of the spring nut.
9. Check solenoid air gap and other items per Self-Adjust Maintenance, Section III-C. Adjust if necessary
10. Check that solenoid linkages can move freely. It requires approximately 28 lbs of pressure to seat solenoid plunger to frame on a correctly functioning brake.
11. Check voltage reading at coil terminals against coil voltage rating.
12. Check that brake coils are energized at the same time as, or prior to, motor and de-energized at the same time, or after, motor.
13. If stopping time exceeds 1 second, or if the application requires more than five stops per minute, check the thermal requirements to stop load against the thermal capacity of the brake.
14. Check for excessive voltage drop in motor line when motor is started. Check wire gauge of supply line against motor starting current and solenoid inrush current. Measure voltage drop at solenoid coil terminals during maximum inrush current condition. To accomplish this, insert a block of wood, or other nonmagnetic material, between solenoid plunger and frame. Block thickness should approximately equal solenoid air gap. Energize motor and brake simultaneously, take reading and immediately shut down. This is to prevent motor, brake, or solenoid burnup.
B. If brake hums, solenoid pulls in slowly, or coil burns out:
15. Check Items A-7, A-9, A-11 and A-14.
16. Check if shading coils are broken.
17. Check for worn plunger guides or if plunger rubs on solenoid frame laminations.
18. Check for worn solenoid plunger and frame.
19. Check if solenoid is dirty.
20. Check if solenoid mounting screws have loosened.
21. Check for worn or binding linkage. For normal pressure required to seat solenoid plunger to frame see A-10.
C. If brake is noisy during stopping and/or friction discs shatter:
22. Check for worn motor bearings allowing shaft runout.
23. On foot mounted brakes, recheck alignment.
24. Check hub position on shaft. The outboard face of hub should protrude $3 / 32$ " to $1 / 8$ " beyond face of outboard friction disc.
25. Check motor shaft endfloat. It should not exceed 0.020".
26. Check concentricity of endplate and C-face register. Alignment must be within .007" concentricity and face runout. Shaft runout should be within .002" TIR.

Vertical Spring Assembly

Refer to service sheet 8-078-936-05 for proper spring and spacer positions when brake is assembled for vertical orientation.

Note: Refer to page 2, Brake Mounting,
for removal and replacement of housing. Loosen two locking screws. Slide bracket outward to increase or inward to decrease air gap. Tighten screws $75-78 \mathrm{lb}-\mathrm{in}$.

COIL REPLACEMENT

1
Disconnect coil lead wires from terminal block.

Note: Refer to page 2,
Brake Mounting, for removal and replacement of housing.

2
A. Remove solenoid mounting screws.
B. Lift solenoid frame away from plunger.

$$
\begin{aligned}
& \mathrm{A} \\
& \stackrel{4}{0} \mathrm{C}
\end{aligned}
$$

A. Insert new coil.
B. Press plunger guides into place.
C. Insert and tighten guide screws.

A. Slide coil assembly onto plunger.
B. Insert mounting screws and tighten to $125 \mathrm{lb}-\mathrm{in}$.

4
(6)

Reconnect coil leadwires to terminal block.

Note: Refer to page 2, Brake Mounting,
for removal and reassembly of housing.
A. Push plungers down.
B. Pull manual releases to hold plungers.
C. Remove support plate screws.

Friction Disc Wear:

1. Discs can wear to 50% of original thickness, or .187".
2. Entire wear of disc pack cannot exceed the thickness of a new disc, or . $375^{\prime \prime}$.

2
A. Remove support plate.
B. Remove retaining clips.
C. Remove disc pack components.
D. Discard old friction discs.

A. Install new friction discs and reassemble in reverse order of disassembly.
B. Reinstall the retaining clips.
C. Position support plate and tighten twelve screws to $75-78 \mathrm{lb}$-in.

* For vertical brakes refer to Service Instruction Sheet 8-078-936-05.

Information required when ordering replacement parts:

- Give Part Number of parts needed, Brake Model Number and Brake Serial Number. The Brake Model and Serial Number may identify special brakes not covered by this parts list.
- When ordering hubs, specify shaft diameter (hub bore) and keyway.

General Information

- For 86,100-02 see Table 1A.
- For vertical details consult factory.
- Enclosures are designated as follows:
$\mathbf{O}=$ Standard
$\mathbf{E}=$ Dust-tight, waterproof (DTWP)

[^2]TABLE 1A:
Endplate (only variable) for 86,100-02 AC or DC Units (for mounting on NEMA C-face of motor frames 504UC, 505C, 504SC and 505SC)

Item No	Description	Part Number	Models Used On
A	Endplate	$8-002-662-06$	$1-086-1 \times 1-02$ and 1-086-1×5-02
	Endplate and oil seal assembly	$5-22-6611-00$	$1-086-1 \times 2-02$ and 1-086-1X6-02

Note: Term left or right applies when looking at support plate assembly from outboard face.
TABLE 2:
Components of Support Plate Assemblies

TABLE 2: Components of Support Plate Assemblies		Assembly Part Number \rightarrow	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	으N
Item No.	Description	Part Number \downarrow	+	N
8 84 11	Solenoid lever and pinion assembly (right hand) (comprised of Items 28, 32, 32R, 54, 71, 141 \& 141A) Solenoid lever and pinion assembly (left hand) (comprised of Items 28A, 32, 32R, 54, 71A 141 \& 141A) Pressure spring (red)	$\begin{aligned} & 5-66-7321-00 \\ & 5-66-7361-00 \\ & 9-70-5801-00 \end{aligned}$	1 1 2	1 1 2
$\begin{gathered} 12 \\ 13 \\ 13 \mathrm{C} \\ 13 \mathrm{~N} \end{gathered}$	Solenoid assembly Solenoid link/bearing assembly Cap screw (solenoid link) Nut (solenoid link)	$\begin{gathered} \text { see Table } 3 \\ 5-55-6001-00 \\ 8-157-703-00 \\ 9-40-3732-00 \end{gathered}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$
$\begin{gathered} \hline 17 \\ 17 \mathrm{~A} \\ 17 \mathrm{~B} \\ 17 \mathrm{E} \\ 17 \mathrm{~S} \end{gathered}$	Lever arm assembly (right hand) Lever arm assembly (left hand) Pressure button Eccentric sleeve (lever arm) Set screw (lever arm) 1/4-20×1/4"	$\begin{aligned} & 5-17-6601-00 \\ & 5-17-6602-00 \\ & 9-25-1908-00 \\ & 8-054-201-00 \\ & 9-20-3004-00 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 4 \end{aligned}$
$\begin{gathered} 19 \\ 22 \\ 28 \\ 28 \mathrm{~A} \end{gathered}$	Pressure spring nut Solenoid lever stop Solenoid lever (right hand) (component of Item 8) Solenoid lever (left hand) (component of Item 8)	$\begin{aligned} & 8-019-201-00 \\ & 8-022-603-00 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	2 2 1 1
$\begin{gathered} 32 \\ 32 R \\ 53 \\ 53 P \end{gathered}$	Pinion (components of Items 8 and $8 A$) Retaining ring (component of items 8 and 8 A) Spring tube (manual release) Roll pin (spring tube)	$\begin{aligned} & 8-053-201-00 \\ & 9-32-4012-00 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	2 2 2 2
$\begin{gathered} 54 \\ 59 \\ 60 \\ 60 S \\ 61 \end{gathered}$	Sleeve (component of Items 8 and 8 A) Release spring Terminal block Machine screw (terminal block) Terminal jumper	$\begin{aligned} & 9-71-0004-00 \\ & 9-60-0925-00 \\ & 9-10-2712-00 \\ & 9-60-0803-00 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	2 2 1 2 2
$\begin{gathered} 71 \\ 71 \mathrm{~A} \\ 76 \\ 76 \mathrm{H} \\ 76 \mathrm{~S} \\ 76 \mathrm{~W} \end{gathered}$	Wrap spring (right hand) (component of Item 8) Wrap spring (left hand) (component of Item 8A) Wrap spring stop Holding plate (previous design was flat plate) Cap screw (spring stop) Lock washer (spring stop)	$\begin{aligned} & 8-076-203-00 \\ & 8-076-204-00 \\ & 9-17-2812-00 \\ & 9-45-1328-00 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 4 \\ & 4 \end{aligned}$	1 1 2 2 4 4
$\begin{gathered} 126 \\ 130 \\ 131 \\ 131 \mathrm{R} \\ 132 \\ 132 \mathrm{H} \\ \text { 132L } \end{gathered}$	Support plate and bearing assembly Pivot pin (lever arm) Pivot pin (solenoid levers) Retaining ring (pivot pins) Cap screw hex head 5/16-18 $\times 1 / 2^{\prime \prime}$ Holding plate (solenoid mounting) Lock plate (solenoid mounting)	5-26-6607-00 8-118-204-00 8-131-601-00 9-03-0020-00 8-350-009-00 8-076-665-00 8-076-662-00	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 8 \\ & 8 \\ & 4 \\ & 4 \end{aligned}$	1 2 1 8 8 4 4
$\begin{gathered} 134 \\ 138 \\ 138 \mathrm{~A} \\ 141 \\ 141 \mathrm{~A} \end{gathered}$	Spacer (pressure spring) Bearing (washer type) Bearing (washer type) Spacer (wrap spring) (component of Items 8 and 8A) Spacer (wrap spring) (component of Items 8 and 8A)	$\begin{aligned} & 8-134-001-05 \\ & 8-138-201-00 \\ & 8-138-701-00 \end{aligned}$	$\begin{gathered} 2 \\ 14 \\ 4 \\ 4 \\ 2 \end{gathered}$	2 14 4 4 2
$\begin{gathered} 146 \\ 146 A \\ 146 B \\ 146 R \\ 152 \\ 152 P \\ 152 R \end{gathered}$	Release rod (right hand) Release rod (left hand) Ball bearing (release rod) Retaining ring (release rod) Truarc 5100-25-ZD Pressure spring stud Pivot pin Retaining ring Truarc \#5100-37	8-146-203-00 8-146-663-00 9-01-6801-00 9-03-0007-00 8-152-201-00 8-118-202-00 9-03-0019-00	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 4 \end{aligned}$
$\begin{aligned} & 157 \\ & 158 \end{aligned}$	DC switch kit Arc suppression module kit	see Table 3 see Table 3		$\begin{aligned} & 2 \\ & 2 \end{aligned}$
$\begin{gathered} 178 \\ 178 \mathrm{~S} \\ 179 \\ 179 \mathrm{G} \\ 179 \mathrm{~S} \\ 179 \mathrm{~W} \end{gathered}$	Instruction plate Drivescrew Solenoid mounting plate Grommet (mounting plate) Shoulder screw (mounting plate) Washer (mounting plate)	$\begin{aligned} & 8-078-054-00 \\ & 9-25-1303-00 \\ & 8-179-602-01 \\ & 8-147-202-00 \\ & 9-26-1108-00 \\ & 8-138-202-00 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$
Not Shown	Space Heater Kit (115v) (230v)	$\begin{aligned} & 5-27-2008-00 \\ & 5-27-2009-00 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Note: Some brakes manufactured prior to the "-02" series had solenoids which were mounted on (4) rubber shock mounts. Conversion kit 5-12-9596-00 is available to replace these mounts.

Support Plate Assembly

Solenoid and Coil Assembly

TABLE 3 - Components of Solenoid and Coil Assemblies

Item	Description		Part Number
AC Brakes			
12*	Solenoid assembly (AC)		5-12-5521-00
12A	No. K9 coil assembly 60 Hz	115 Vac 230 Vac 460 Vac 575 Vac	$\begin{aligned} & 5-96-6951-* * \\ & 5-96-6952-* * \\ & 5-96-6954-* * \\ & 5-96-6955-* * \end{aligned}$
159*	Brake release interlock switch kit		5-57-5504-00
DC Brakes			
12	Solenoid assembly (DC) (right hand) Solenoid assembly (DC) (left hand)		$\begin{aligned} & 5-12-5531-00 \\ & 5-12-5532-00 \end{aligned}$
12A	No. 9 coil assembly	$\begin{aligned} & 115 \text { Vdc } \\ & 230 \text { Vdc } \end{aligned}$	$\begin{aligned} & 5-96-6916- \\ & 5-96-6917- \end{aligned}$
$\begin{aligned} & 157 \\ & 158 \end{aligned}$	DC switch kit Arc suppression module kit		$\begin{aligned} & 5-57-5501-00 \\ & 5-57-5711-00 \end{aligned}$

*AC brakes with the brake release interlock (N.O.) switch (Item 159) use the DC solenoid assembly for switch mounting.
** -05 (green coil) indicates class H coil -33 (black coil) indicates class B coil

TABLE 4
Contents of Assemblies and Kits

Item No.	Description
12	Solenoid assembly $(5-12-55 X X-00)$ 1 - Plunger 1 - Frame 2 - Lock plates 1 - Solenoid link cap screw 1 - Solenoid link nut 1 - Cable clamp and screw (DC only)
12A	Coil assembly (5-96-69XX-**) 1 - Coil 2 - Plunger guides 2 - Plunger guide screws
157	DC switch kit (5-57-5501-00) 1 - DC switch 2 - Mounting screws 2 - Lock washers
158	Arc suppression module kit (5-57-5711-00) 1 - Arc suppression module 1 - Cable strap 1 - Mounting screw 1 - Lead wire terminals
159	AC switch kit (5-57-5504-00) (brake release interlock switch - N.O.) 1-AC switch 1 - Mounting screws 2 - Lock washers

Copyright ${ }^{\oplus}$ 2000-2008 by Rexnord Industries, LLC
Rexnord Industries, LLC
Stearns Division
5150 S. International Dr.
Cudahy, Wisconsin 53110
(414) 272-1100 Fax: (414) 277-4364
www.stearns.rexnord.com

Information Needed for Modifications

Stearns is dedicated to providing you with the most comprehensive selection of modified spring-set disc brakes on the market today. We have included a list of our more popular modifications complete with descriptions, pictures and graphics when applicable and list price adders along with their representative series. Note that modification list prices are subject to the same discounts as apply to the complete brake assembly.
Below please find examples of how the modifications are called out with a letter in the 8 th position of the 12 digit model number. Note that these listings are not complete, but represent our more popular selections. For any special applications and modification requirements not found here, please contact your Stearns representative.
IMPORTANT - The modification letter will appear in the 8th position to call out the modification.

Examples:

1-056-XXX-_X	
	8th position
1-087-XXX-_X	
1-08X-XXX-_X	
	8th position

See specific tables for some of the available options of the series required.
If two or more letter modifications are required, the 8th position of the part number will remain zero and position 10 , 11 and 12 will be assigned by Stearns as a special part number.

All Series

Modification	Letter
Vertical Mounting - Above Motor	A
Class H Insulation	H
Space Heater (115 Volt Circuit)	I
Space Heater (115 Volt Circuit), Brass Pressure Plate and Stationary Disc	J
Brass Pressure Plate and Stationary Disc	K
Vertical Mounting - Below Motor	L
Thru-Shaft Housing (Standard)	Q
Vertical Mounting - Above Motor and Class H Insulation	T
Electrical Release Indicator Switch, N.O. contacts	W
Side Manual Release with Shaft Through Housing Stamped Steel	Z
Series 87,X00 Only	N
Vertical Mounting - Above Motor, Brass Pressure Plate and Stationary Disc	Y
Series 81,X00, 82,X00 87,000 and 87,100	
Side Manual Release	

Solenoid Actuated Brakes Modification Index

Category	Description	Modification Number (M) \qquad	Page
Coils	Class H Insulation	M6	53
	DC Coil Option	M9	54
	Non-Standard Voltage AC	M25	57
	Non-Standard Voltage DC	M9	54
	Special Leadwire Length	M31	58
Corrosion Resistance	Brass Pressure Plate	M3	52
	Brass Stationary Disc	M4	52
	Breather Drain	M5	53
	Space Heater (115 or 230 volt)	M13	54
	Special Paint	M14	55
	Stainless Steel Self-Adjust	M15	55
	Stainless Steel Hardware	M16	55
	Corrosion-Resistant Endplate	M39	59
	Stainless Steel Hub	M42	59
Endplates	Special Internal Leadwire Hole	M35	58
	Corrosion-Resistant Endplate	M39	59
	Special Milling: Flat Bottom on Housing \& Endplate	M40	59
Friction Discs	Special Material Friction Disc	M44	60
	Carrier Ring Disc (Cast Iron)	M46	60
	Carrier Ring Disc (Bronze)	M47	60
Gaskets	Motor Gasket	M38	59
	Viton ${ }^{\text {® }}$ Gasket	M43	60
Hubs/ Brake Shaft	Non-Standard Bore or Keyway	M11	54
	Special Shaft - Coupler Brakes	M29	57
	Taper-Lock Hubs	M30	58
	Stainless Steel Hub	M42	59
	Splined Hub and Friction Disc	M45	60
Machining Options	Encoder/Tach Machining	M7	53
	Metric Machining	M33	58
	Special Milling: Flat Bottom on Housing \& Endplate	M40	59
Manual Adjust	Manual Adjust for 87,000 Series	M48	60
Manual Release	Side Manual Release	M12	54
	Non-Maintained (Deadman)	M32	58
	Internal Release	M37	59
Mounting	Vertical	M21, M23, M24	56-57
	Metric Machining	M33	58
	Motor Frame Adapters		94
	Foot Mounting Kits		95
Nameplates	Mylar or Metal	M10	54
	Brass Nameplate	M41	59
Paint/ Special Finish or Material	Brass Pressure Plate	M3	52
	Brass Stationary Disc	M4	52
	Special Paint	M14	55
	Stainless Self-Adjust	M15	55
	Stainless Steel Hardware	M16	55
	Corrosion-Resistant Endplate	M39	59
	Stainless Steel Hub	M42	59
Special Housing	Thru-Shaft NEMA 2	M19	56
	Thru-Shaft NEMA 4 and 4X	M20	56
	Split Housing	M36	59
Switches	Electrical Release Indicator	M1	52
	Electrical Release Indicator Proximity Switch	M2	52
	Thermal Switch	M18	55
	Wear Indicator	M27	57
Tach Mounting	Tach Machining	M7	53
	Thru-Shaft NEMA 2	M19	56
	Thru-Shaft NEMA 4 and 4X	M20	56
Torque Derating	Brass Pressure Plate	M3	52
	Brass Stationary Disc	M4	52
	Special Derating of Torque	M34	58
Wiring Options	Conduit Box with Terminal Strip	M8	53
	Terminal Strip	M17	55
	Special Length Leadwires	M31	58
	Internal Leadwire Hole	M35	58

M1 Electrical Release Indicator Switch

This switch is used to indicate when the brake is in a released, non-holding position. This mechanism utilizes a mechanical limit switch.

Series	List Price Adder
$56, \mathrm{X00} \& 65,300$	$\$ 450.00$
81,$000 ; 82,000 ; 87, \mathrm{X} 00$	450.00
$86, \mathrm{X} 00$	900.00

Not available on 56,800 or 87,800 Series Brakes.

M2 Electrical Release Indicator Proximity Switch

Same function as the switch in M1 above; except, M2 uses an electronic proximity sensor.

Series	List Price Adder
81,000	
82,000	$\$ 1375.00$
$87, \mathrm{X} 00$	
$86, \mathrm{X} 00$	2750.00

Not available on 56,800 or 87,800 Series Brakes.

M3 Brass Pressure Plate

Typically used in marine applications or in applications where the potential for sparks need to be eliminated. Brass can also be used to reduce torque.

Series	List Price Adder
$56, \mathrm{X00}$	See M4
$65, \mathrm{X} 00$	$\$ 250.00$
81,$000 ; 82,000$	800.00
$86, \mathrm{X} 00$	1050.00
$87, \mathrm{X} 00$	600.00

M4 Brass Stationary Discs

Used with brass pressure plate (List per disc).

Series	List Price Adder
$56, \mathrm{X00}$	$\$ 250.00$
$65, \mathrm{X00}$	250.00
$87, \mathrm{X00}$	450.00
81,$000 ; 82,000$	600.00
$86, \mathrm{X} 00$	750.00

M5 Breather Drain

A drain plug is tapped into the bottom of the housing to let moisture escape. This option is only available on brakes with cast aluminum or cast iron housings.

Series	List Price Adder
$56, \mathrm{X} 00$	$\$ 380.00$
$65, \mathrm{X00}$	500.00
81,000	
82,000	380.00
$86, \mathrm{X} 00$	
$87, \mathrm{X} 00$	

M6 Class H Insulation

Brake is provided with an epoxy encapsulated coil, rated for NEMA Class H designation.
These Class H coils are standard on hazardous location brakes.

Series	List Price Adder
$56, \mathrm{X} 00$	$\$ 145.00$
$87, \mathrm{X} 00$	175.00
81,000	285.00
82,000	570.00
$86, \mathrm{X} 00$	

M7

Housing Machining for Encoder/Tach Mounting

Series	Standard Machining ${ }^{1}$				Close Tolerance ${ }^{2}$			Tether Mount ${ }^{3}$	
	Bolt Circle \& Register		Bolt Circle - but no Register		Bolt Circle \& Register			A Single Bolt Hole	
	Open ${ }^{4}$ Enclosure List Price Adder	Enclosed ${ }^{5}$ List Price Adder	Open ${ }^{4}$ Enclosure List Price Adder	Enclosed ${ }^{5}$ List Price Adder	Open ${ }^{4}$ Enclosure List Price Adder	Enclosed ${ }^{5}$ List Price Adder	Maximum Thru-Shaft Dia. (inch)	Open ${ }^{4}$ Enclosure List Price Adder	Enclosed ${ }^{5}$ List Price Adder
56,X00 (except N/A for 56,800)	N/A	N/A	N/A	N/A	N/A	N/A		\$350	\$460
87,000-87,100	\$700	\$1,200	\$80	\$350	\$2,450	\$2,750	1.63	\$240	\$350
87,M00-87,500-87,600	N/A	\$1,200	N/A	\$350	N/A	\$2,750		N/A	\$350
81,000-82,000 ${ }^{6}$	\$1,100	\$1,375	\$305	\$580	\$2,550	\$2,825	2.5	\$465	\$740
86,000	\$1,100	\$1,375	\$380	\$780	\$2,550	\$2,950		\$540	\$940

${ }^{1}$ Standard Machining: The housing is machined for a thru shaft, and to allow for an encoder or tach to be mounted. This option is only available on brakes with cast aluminum or cast iron housings. Consult factory for availability.
${ }^{2}$ Close tolerance: The housing and endplate are assembled and dowel pinned together - then machined as a matched set for a through shaft and encoder mounting. This option is only available on brakes with cast aluminum or cast iron housings. This option is recommended for Series 81,$000 ; 82,000$; and $86, \mathrm{X} 00$ due to the long distance between the motor and encoder.
${ }^{3}$ Tether Mount: The housing is machined for a through shaft, and a single tapped hole for a bolt to secure a tether arm. ($56, X$ has a through hole and tach-welded nut on inside of housing, instead of a tapped hole).
${ }^{4}$ Referred to on the product pages in the catalog as IP23
${ }^{5}$ Referred to on the product pages as IP54/55 (these enclosure ratings no longer apply when the housing is machined for this modification - the customer is responsible for meeting any specific enclosure rating when assembling the encoder.
${ }^{6}$ M7 Modification for Series 81,000 and 82,000 will also require the M12 Modification; the side manual release.

M8 Conduit Box with Terminal Strip

A terminal strip is located inside the conduit box. It allows for easy connection and identification of lead wires.

Series	List Price Adder
All series except hazardous location (not available for the 48,100 series)	$\$ 300.00$ (IP 23) $\$ 600.00$ (IP 54)
All hazardous location brakes	$\$ 600.00$

M9 DC Coil Option

For DC voltage applications. Operates with an electronic DC switch module.

Series	List Price Adder	Additional Adder for Non-Standard Voltage
$56, \mathrm{X} 00$	$\$ 300.00$	$\$ 250.00$
$87, \times 00$	570.00	250.00
81,000	1050.00	250.00
82,000	1565.00	250.00
$86, \mathrm{X} 00$	2625.00	500.00

For standard voltage listing, see the ordering information section for the specific brake.

Not available on Hazardous Location Brakes.

M10 Nameplates

To order new brake nameplates, the serial number of the brake is required. A loose nameplate shipped from Stearns Division without being attached to a brake must have all agency markings removed (UL, CSA, etc.). In order to have a brake renameplated with the appropriate agency markings, it must be returned to Stearns Division for product verification.

List Price:	First Nameplate	$\$ 150.00$
Net Price:	Additional Mylar Nameplates	1.50
	Additional Metal Nameplates	4.00

M11 Nonstandard Hub or Keyway

For standard bore diameter and keyway specifications, see specific brake selection page. For taper bores, consult factory for pricing.

	List Price Adder					
Description	$\mathbf{4 8 , 1 0 0}$	$\mathbf{5 6 , X 0 0}$	$65, \mathbf{X 0 0}$	81,000 82,000 86,000	87,000	
87,100	87,800	87,700				
All Quantities and Enclosures	$\$ 225.00$	225.00	325.00	600.00	250.00	250.00

M12 Side Manual Release

Side release not available on the 1-086-000

Sheet Metal Housing (IP 23 Only)	List Price Adder
56,$000 ; 56,400 ; 56,500$	$\$ 50.00$
87,$000 ; 87,100$	$\$ 50.00$
Cast Iron Housing	List Price Adder
87,000 IP 23	$\$ 385.00$ includes casti iron housing adder of $\$ 110$
87,000 IP 54	$\$ 275.00$
81,000	
82,000	$\$ 350.00$

M13 Space Heater (115 or 230 Volt Only)

A space heater cartridge is used to prevent moisture build-up inside the brake housing.

Series	Wattage	List Price Adder
$56, \mathrm{X00}$	15	$\$ 210.00$
81,$000 ; 82,000 ; 86, \mathrm{X} 00$	50 and 75	275.00
$87, \mathrm{X} 00^{*}$	25 to 30	225.00
Hazardous Duty Brakes	25 to 50	750.00

*Not available on 56,800 or 87,800 Series Brakes

56,000 Series

87,000 Series (also representative of 81,$000 ; 82,000 \& 86,000$ Series)

M14 Special Paint

Based on a zinc chromate finish, both inside and outside of brake. Consult factory for actual application.

Series	List Price Adder
$56, \mathrm{X} 00$	$\$ 210.00$
$65, \mathrm{X} 00$	300.00
$81,000,82,000$, $86, \mathrm{X} 00$	550.00
87,000	525.00

M15
 Stainless Steel Self-Adjust Mechanism

For severe duty applications. This option includes a stainless steel pinion and plated wrap spring in the auto-adjust mechanism. It is only available on the 81,$000 ; 82,000$; 86,000 and 87,000 Series Brakes

Series	List Price Adder
81,$000 ; 82,000 ;$ 87,000	$\$ 350.00$
$86, \mathrm{X00}$	$\$ 700.00$

M16 Stainless Steel Hardware

All external hardware is provided in stainless steel.

Series	List Price Adder
48,100	$\$ 125.00$
$56, \mathrm{X00}$ $87, \mathrm{X} 00$	$\$ 150.00$
$81,000,82,000$ 86,000	$\$ 275.00$

M17 Terminal Strip

A terminal strip is located in the inside of the brake, on the support plate. It allows for easy connection and identification of lead wires.

Series	List Price Adder
ALL	$\$ 150.00$

56,000 Series

87,000 Series (also representative of 81,000; 82,000 \& 86,000 Series)

M18 Thermostat (thermal switch)

This switch is used to indicate when a brake is overheating. Thermostats are standard in $8 \mathrm{X}, 300$ and $65, \mathrm{X} 00$ Series. This option is for NON-UL brakes only.

Series	Switch Operation Specificatons	List Price Adder
$87, \mathrm{X} 00$	Normally Closed: Opens at $295^{\circ} \mathrm{F}$, Closes at $255^{\circ} \mathrm{F}$	$\$ 400.00$
$81,000,82,000$ $86, \mathrm{X} 00$	Normally Closed: Opens at $210^{\circ} \mathrm{F}$, Closes at $180^{\circ} \mathrm{F}$	400.00
$56, \mathrm{X} 00$	Normally Closed: Opens at $195^{\circ} \mathrm{F}$, Closes at $175^{\circ} \mathrm{F}$	400.00

M19 Through-Shaft Enclosure

This configuration allows for the motor shaft to extend beyond the housing of the brake.

Series	List Price Adder
$56,000,56,400$	$\mathrm{~N} / \mathrm{C}$
$56,100,56,200$	$\$ 110.00$
56,600	110.00
$81,000,82,000$	225.00
86,000	300.00
$87,000,87,100$ sheet metal	$\mathrm{N} / \mathrm{C}^{*}$
$87,000,87,100$ with cast iron housing	225.00 (adder for cast iron housing is $\$ 210.00$ additional)

*Up to 1-5/16"
Above 1-5/16", add \$80.00.

M20 Through-Shaft Cast Iron Enclosure with Lip Seal

This configuration allows the motor shaft to extend beyond the housing of the brake with a bushing to use with a housing lip seal.

Series	List Price Adder
$56,100,56,200$ 56,600	$\$ 220.00$
$81,000,82,000$	500.00
86,000	700.00
$87,000,87,100$	300.00

M21

Vertical Mounting for

3 Friction Disc Brake

Example of 56,000 Series spring requirements for vertical above and below mounting.

The 56,000 20 and 25 lb -ft Series Brakes are shipped with spring kits. Vertical modification at 15° from horizontal. Read installation and service instructions for details on its use.

Description	List Price Adder
Factory assembly for three disc configuration.	$\$ 20.00$

M23 Vertical Mounting for $87, \mathrm{X00}$ Series
 For factory modification to vertical above or below application.

 Vertical modification at 15° from horizontal.Series 87,000 \& 87,100

Torque Value (lb-ft)	 IP 54 steel hsg Above	 IP 54 steel hsg Below	IP 54/55 cast iron Above	IP 54/55 cast iron Below
$6,10,15,25$ \& 35	$\$ 95.00$	no mod req'd	$\$ 370.00^{*}$	no mod req'd
50 \& 75	$\$ 105.00$	$\$ 105.00$	$\$ 380.00^{*}$	$\$ 105.00$
105	$\$ 135.00$	$\$ 135.00$	$\$ 410.00^{*}$	$\$ 135.00$

*Includes adder for side manual release
Series 87,300; 87,800; 87,700

Torque Value (lb-ft)	Vertical Above	Vertical Below
$6,10,15,25 \& 35$	$\$ 95.00$	no mod req'd
$50 \& 75$	$\$ 105.00$	$\$ 105.00$
105	$\$ 135.00$	$\$ 135.00$

M24 Vertical Mounting for 81,000; 82,000 and 86,000 Series

These brakes require factory modifications for vertical applications. Vertical modification at 15° from horizontal.

Example of 81,000 Series pin, spring and spacer requirements for vertical above mounting.

M25 Voltage Non-Standard (AC)

For standard voltage listing, see the ordering information section for the specific brake.

Series	List Price Adder
48,100	$\$ 165.00$
$65, \mathrm{X} 00$	165.00
56,000	165.00
81,$000 ; 82, \mathrm{X} 00$	200.00
$86, \mathrm{X} 00$	400.00
$87, \mathrm{X} 00$	175.00

M27 Wear Indicator (Friction Disc) Switch with Leads

A mechanical switch is installed to indicate when the friction disc requires replacement.

Series	List Price Adder
81,$000 ; 82, \mathrm{X00}$	$\$ 225.00$
86,000	225.00
$87, \times 00^{*}$	225.00

*N/A on 87,800

87,000 Assembly

87,000 Assembly

M29 Special Shaft-Coupler Brake and Foot Mount Brake

Any non-standard input or output shaft on a 56,700, 87,200 or 87,700 Series Brake.

Series	List Price Adder
56,700	$\$ 325.00$
87,$200 ; 87,700$	325.00

M30 Taper-Lock Hubs

For use in severe duty applications and reversing application to secure the brake hub to the motor shaft.

Series	Series	List Price Adder
87,$000 ;$ 87,100 IP 23 only	10 to $35 \mathrm{lb}-\mathrm{ft}$	$\$ 200.00$
	50 to $75 \mathrm{lb}-\mathrm{ft}$	225.00
	250.00	
81,000	$125 \& 175 \mathrm{lb}-\mathrm{ft}$	225.00
	$230 \mathrm{lb}-\mathrm{ft}$	325.00
82,000	$125 \& 175 \mathrm{lb}-\mathrm{ft}$	375.00
	$230 \& 330 \mathrm{lb}-\mathrm{ft}$	550.00
	$440 \mathrm{lb}-\mathrm{ft}$	675.00

M31 Special Length Lead Wires

Up to 5	Series	List Price Adder
	All	$\$ 65.00$

Over 5'	Series	List Price Adder
	All	$\$ 130.00$

M32 Non-Maintained (Deadman) Manual Release

The brake is mechanically released while the release is pulled into a release position. Once released, the brake sets.

| Series* List Price
 Adder
 $56,200,56,700$,
 $56,800 \& 56,900$ $\$ 110.00$
 $56,000,56,400 \&$
 56,500 185.00
 81,$000 ; 82,000$
 $\& 87,000$ 125.00
 86,000 |
| :--- | | *N/A on $56,300$. |
| :--- |
| Standard on 56,100 and $56,600$. |

M33
 Metric Machining Including Cast Iron Endplate

Stearns SAB's can be used with metric motor frames. The following table indicates standard frame capabilities for an IEC B14 Face mount.

Series	IEC Frame Sizes	List Price Adder
56,$200 ; 56,400 ;$ 56,600 \& 56,900	B14 flange in sizes 80; 90 \& 100 B5 flange in sizes D63 \& D71	$\$ 340.00$
56,500	B14 flange in sizes 112; 132 \& 160 B5 flange in sizes D71; D80; D90; D100 \& D112	$\$ 340.00$
87,000	B14 flange in sizes 112; 132 \& 160 B5 flange in sizes D71; D80; D90; D100 \& D112	$\$ 340.00$

M34 Derating of Torque

Stearns industrial SAB's can be custom built to meet your specific torque requirements.

Series	List Price Adder	Derate To
56,500	$\$ 315.00$	$6 \mathrm{lb}-\mathrm{ft}$
87,100	315.00	20 or $30 \mathrm{lb}-\mathrm{ft}$
$81,000 \& 82,000$	460.00	To be approved with application engineering

M35 Special Internal Lead Wire Hole with Bushing

Any non-standard, internal lead wire hole in the endplate.

Series	List Price Adder
All brakes except hazardous location brakes	$\$ 175.00$

SAB's can be provided with a split housing.

Series	List Price Adder
81,$000 ; ~ 82,000$ $\& 86,000$	$\$ 725.00$
81,$000 ; 82,000$ $\& 86,000$ gasketed	$\$ 1,000.00$
87,$000 ; ~ 87,100$ sheet metal	$\$ 200.00$
87,$000 ; 87,100$ cast iron gasketed	$\$ 250.00$

M37 Internal Release

An internal manual release requires that the housing be removed before the brake can be released by hand.
*N/A for hazardous location brakes

Series	List Price Adder
$87,0 X X ; ~ 81,0 X X ;$ $82,0 X X ; ~ 86,0 X X$	$\mathrm{~N} / \mathrm{C}$

M38 Motor Gasket

The brake is provided with an additional C-Face gasket to be placed between the brake and motor.

Series*	List Price Adder
81,$000 ; 82,000 ;$ 86,000	$\$ 100.00$
$56, \mathrm{X00} \& 87,000$	75.00

*N/A for hazardous location brakes

M39 Corrosion-Resistant Endplate

Rust preventative treatment applied to brake endplate.

Series	List Price Adder
$56,200,56,400$, $56,500,56,800 \&$ 65,300	$\$ 425.00$
81,$000 ; 82, \mathrm{X} 00$ $\& 86,000$	575.00
$87, \mathrm{X} 00$	475.00

M40 Special Milling: Flat Bottom on Housing \& Endplate

This modification is provided in the event the flange between the endplate and housing interfere with the mounting configuration.

Series	List Price Adder
81,$000 ; 82,000$ $\& 86,000$	$\$ 650.00$

W41 Brass Nameplate with Special Engraving

Brass nameplates offer greater durability in outdoor applications.

Series	List Price Adder
81,$000 ; 82,000$ $\& 86,000$	$\$ 75.00$

M42 Stainless Splined Hub

Stainless steel splined hubs are available for extreme outdoor applications, to prevent corrosion on the disc and hub interface.

Series	List Price Adder
81,$000 ; 82,000$ $\& 86,000$	$\$ 1060.00$
87,000	800.00

M43 Viton ${ }^{\circledR}$ Gasket

Gaskets and o-rings in brakes can be provided in Viton ${ }^{\circledR}$ (flourocarbon) material, in place of the standard neoprene. However, the V-wiper steel-backed seals that are used on pull rod manual releases are not available in Viton ${ }^{\circledR}$ and remain as neoprene.
Viton ${ }^{\circledR}$ is a registered trademark name of DuPont.

Series	List Price Adder
81,$000 ; 82,000 ; 86,000$	$\$ 1,060.00$
$87,000^{\star}$	$\$ 1,125.00$
56,000	$\$ 950.00$

${ }^{*}$ Viton ${ }^{\oplus}$ gaskets and o-rings are standard for 87,X00 series, except for hazardous location brakes where Viton ${ }^{\circledR}$ seals are N/A.
**Except series 56,200; 56,700; \& 56,900 - where Viton gaskets are standard.

M44 Special Friction Disc (per Disc)

Any non-standard friction disc in a brake. Cost is per disc.

Non-standard discs include: hi-inertia friction discs and heavy duty friction discs. Does not include carrier ring friction discs (see M46 and M47).

Series	List Price Adder
87,000	$\$ 50.00$
56,000	45.00

M45 Splined Hub and Friction Disc

Standard on most models. Used for severe duty and reversing applications.

Series	List Price Adder
87,300	No Charge

Series	Torque (lb-ft)	List Price Adder
$87, \mathrm{X00}^{*}$	$6-35 \mathrm{lb}-\mathrm{ft}$	190.00
	$50 \& 75 \mathrm{lb}-\mathrm{ft}$	290.00
	$105 \mathrm{lb-ft}$	390.00

* Spline is standard on this series. Adder is for pre-revision 24-tooth spline.

M46 Carrier Ring Friction Disc

The friction material is bonded to a steel or zinc/aluminum alloy ring.
This is used for severe duty applications and applications where people are being moved.

Series	Carrier ring material	List Price Adder (per disc)
Horizontal Use Only		
56,X00* (not available on 56,800 series)	Aluminum	$\$ 420.00$
81,000	Steel	700.00
82,000	Steel	700.00
Horizontal or Vertical Use 87,X00** (not available on 87,300 or 87,800 series	Zinc aluminum alloy	550.00

M47 Carrier Ring Friction Disc (Bronze)

The friction material is bonded to a bronze ring. This is used for severe duty applications and applications where people are being moved.
Horizontal applications only
** Only available with pre-revision design, 24-tooth splined hub, which is included in this price

Series	List Price Adder (per disc)
81,000	$\mathrm{~N} / \mathrm{A}$
82,000	$\$ 1050.00$
86,000	1250.00
$87, \mathrm{X00}{ }^{* *}$	
$6-35 \mathrm{lb}-\mathrm{ft}$	925.00
$50 \& 75 \mathrm{lb}-\mathrm{ft}$	1850.00
$105 \mathrm{lb}-\mathrm{ft}$	2775.00

M48
 1,08X,000 Series Manual Adjust Mechanism

Excellent for holding applications when disc wear is not a concern. (Not available on hazardous location brakes.)

Series	List Price Adder
87,000	Subtract \$50 List
81,000	
82,000	No Charge
86,000	

M60 Encoders

Internally mounted encoders are available in some series brakes, including some hazardous location brakes. See pages 49-50 for series availability and additional information.

Maximum Encoder Diameter (in.)	
$1-056$	N/A
$1-087-\mathrm{E} 00$	$2.0^{\prime \prime}$
$1-081 \& 1-082$	$2.5^{\prime \prime}$
$1-086$	$3.5^{\prime \prime}$

Technical Data

SAB Motor Frame Adapter Dimensions

Selection

To select an adapter for a specific brake, refer to the Motor Frame Adapter Tables as shown in the brake series sections of this Catalog. After selecting the adapter stock number, refer to the Tables below for dimensions.
All adapters are constructed with an opening for internal lead wire connection, corresponding to the NEMA standard location for the motor frame size.
Screws for mounting adapter to motor must be provided by customer. Socket head cap screws are supplied for mounting brake to adapter.

Dimensions for estimating only. For installation purposes, request certified prints.

Brake Series	$\begin{gathered} \text { Torque } \\ (\mathrm{lb}-\mathrm{ft}) \end{gathered}$	Adapter Stock Number	Dimensions in Inches (Dimensions in Millimeters)											Add'I Shaft Length Req'd	List Price	Discount Symbol
			A	AH	AJ	AK	AL	B	BF	BK Hole	D	F	L			
56,000	1.5-6	5-55-5041-00	$\begin{gathered} 1.25 \\ (31.75) \end{gathered}$													
65,300*		5-55-5046-00		5.88	7.25	$\frac{8.500}{8.502}$	$\frac{4.497}{4.500}$	9.00	50		4.00	19	. 12	. 94	\$700	B4
$\begin{gathered} 56,000 \\ \text { and } \\ 56,800^{*} \end{gathered}$	10-25	5-55-5043-00		(149.22)	(184.15)	$\frac{(215.900)}{(215.951)}$	$\frac{(114.325)}{(114.275)}$	(228.60)	(12.70)		(101.60)	(4.76)	(3.18)	(23.88)	\$700	B4
$\begin{gathered} 87,000 \\ \text { and } \\ 87,800^{*} \end{gathered}$	6-105	5-55-7046-00	$\begin{gathered} 1.06 \\ (26.99) \end{gathered}$	$\begin{gathered} 7.25 \\ (184.15) \end{gathered}$	$\begin{array}{\|c\|} \hline 11.00 \\ (279.40) \end{array}$	$\begin{gathered} \frac{12.501}{12.504} \\ (317.525) \end{gathered}$	$\left.\begin{gathered} \frac{8.499}{8.497} \\ (215.875) \end{gathered} \right\rvert\,$	$\begin{array}{\|c\|} 13.00 \\ (330.20) \end{array}$	$\begin{array}{c\|} .62 \\ (15.88) \end{array}$	1/2-13 through	$\begin{array}{\|c\|} \hline 4.12 \\ (104.78) \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{gathered} .38 \\ (9.52) \end{gathered}$	$\begin{gathered} .87 \\ (22.10) \end{gathered}$	\$875	B2
87,300		5-55-7054-00				(317.602)	(215.849)									
$\begin{gathered} 87,000 \\ \text { and } \\ 87,800^{*} \end{gathered}$	6-105	5-55-7055-00	$\begin{gathered} 1.00 \\ (25.40) \end{gathered}$		$\begin{array}{\|c\|c} 9.00 \\ (228.60) \end{array}$	$\begin{aligned} & \frac{10.500}{10.502} \\ & (266.700) \end{aligned}$	$\left.\begin{gathered} \frac{8.499}{8.497} \\ (215.875) \end{gathered} \right\rvert\,$	$\begin{gathered} 11.00 \\ (279.40) \end{gathered}$	**		$\begin{array}{\|c\|c} 6.25 \\ (158.75) \end{array}$		$\begin{array}{\|c\|} .25 \\ (6.35) \end{array}$	$\begin{gathered} .81 \\ (20.57) \end{gathered}$	\$450	B2
87,300*		5-55-7045-00				(266.751)	(215.849)									
$\begin{gathered} 87,000, \\ 87,800^{*} \\ \text { and } \\ 87,300^{*} \end{gathered}$	6-105	5-55-7043-00	$\begin{gathered} .75 \\ (19.05) \end{gathered}$	$\begin{array}{\|c\|} \hline 7.25 \\ (184.15) \end{array}$	$\begin{array}{\|c\|c} 5.88 \\ (149.35) \end{array}$	$\begin{gathered} \hline \frac{4.502}{4.507} \\ \frac{(114.35)}{(114.48)} \end{gathered}$	$\frac{8.499}{8.497}$ $\frac{(215.875)}{(215.849)}$	$\begin{array}{\|c\|} 8.75 \\ (222.25) \end{array}$	$\begin{gathered} .62 \\ (15.75) \end{gathered}$	1/2-13 through	$\begin{array}{\|c\|c} 4.00 \\ (101.60) \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{array}{\|c\|} \hline .25 \\ (6.35) \end{array}$	$\begin{array}{\|c} .56 \\ (14.23) \end{array}$	\$1,300	B2
81,000	$\begin{gathered} 125- \\ 130 \end{gathered}$	5-55-2045-00	$\begin{gathered} 1.06 \\ (26.99) \end{gathered}$	$\begin{array}{\|c\|} \hline 11.00 \\ (279.40) \end{array}$	$\begin{array}{\|c\|} \hline 14.00 \\ (355.60) \end{array}$	$\begin{array}{\|c\|} \hline \frac{16.002}{16.005} \\ \left(\frac{406.451)}{(406.527)}\right. \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \frac{12.499}{12.496} \\ \frac{(317.475)}{(317.398)} \\ \hline \end{array}$	$\begin{gathered} 16.50 \\ (419.10) \end{gathered}$	$\begin{gathered} .62 \\ (15.88) \end{gathered}$	5/8-11 through	$\begin{array}{\|c\|} 9.75 \\ (247.65) \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{array}{\|c\|} .25 \\ (6.35) \end{array}$	$\begin{gathered} .87 \\ (22.10) \end{gathered}$	\$1,875	C1
81,000		5-55-2041-00	12		$\begin{array}{\|c\|} \hline 7.25 \\ (184.15) \end{array}$		$\frac{12.499}{12.496}$	$\frac{12.499}{12.496}$	50	5/8-11 through	$\begin{array}{\|c\|c} 6.00 \\ (152.40) \end{array}$	19		$\begin{array}{\|c} .93 \\ (23.62) \end{array}$		C1
81,000	230	5-55-2043-00	(28.58)	(279.40)	$\begin{array}{\|c\|c} 9.00 \\ (228.60) \end{array}$	$\begin{array}{\|c\|} \hline \frac{10.500}{10.502} \\ \frac{(266.700)}{(266.751)} \\ \hline \end{array}$	$\left\|\frac{(317.475)}{(317.398)}\right\|$	$\left\lvert\, \frac{(317.475)}{(317.398)}\right.$	(12.70)	-11 inr	$\begin{array}{\|c\|} \hline 7.75 \\ (196.85) \end{array}$	(4.76)	---	$\begin{gathered} .93 \\ (23.62) \end{gathered}$		C1
$\begin{gathered} 82,000 \\ \text { and } \\ 82,300^{*} \end{gathered}$		5-55-2046-00	$\begin{gathered} 1.94 \\ (49.21) \end{gathered}$		$\begin{array}{\|c\|} \hline 14.00 \\ (355.60) \end{array}$			$\begin{gathered} 16.50 \\ (419.10) \end{gathered}$	$\begin{gathered} .62 \\ (15.88) \end{gathered}$	5/8-11 $\times 1$ deep	$\begin{array}{\|c\|c} 9.50 \\ (241.30) \end{array}$			$\begin{gathered} 1.75 \\ (44.45) \end{gathered}$	\$1,875	C1
$\begin{gathered} 82,000 \\ \text { and } \\ \text { and } \end{gathered}$	$\begin{gathered} 125- \\ 550 \end{gathered}$	5-55-2042-00	$\begin{gathered} 1.38 \\ (34.92) \end{gathered}$	$\begin{array}{\|c\|} \hline 11.00 \\ (279.40) \end{array}$	$\begin{array}{\|c\|} \hline 7.25 \\ (184.15) \end{array}$	$\begin{array}{\|c\|} \hline \frac{8.500}{8.502} \\ \frac{(215.900)}{(215.951)} \end{array}$	$\begin{array}{\|c\|} \frac{12.499}{12.496} \\ \frac{(317.475)}{(317.398)} \end{array}$	$\begin{gathered} 13.25 \\ (336.55) \end{gathered}$. 50	5/8-11 through	$\begin{array}{\|c\|c} 6.00 \\ (152.40) \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{array}{\|c\|} \hline .25 \\ (6.35) \end{array}$	$\begin{gathered} 1.19 \\ (30.23) \end{gathered}$	\$1,325	C1
$\begin{gathered} 82,000 \\ \text { and } \\ 82,300^{*} \end{gathered}$		5-55-2044	$\begin{gathered} 1.38 \\ (34.92) \end{gathered}$		$\begin{array}{\|c\|c} 9.00 \\ (228.60) \end{array}$	$\begin{array}{\|c\|} \hline \frac{10.500}{10.502} \\ \frac{(266.700)}{(266.751)} \end{array}$		$\begin{gathered} 13.25 \\ (336.55) \end{gathered}$	(12.70)	5/8-11 through	$\begin{array}{\|c\|} \hline 7.75 \\ (196.85) \end{array}$			$\begin{gathered} 1.19 \\ (30.23) \end{gathered}$	\$2,075	C1
86,000	$\begin{aligned} & 500- \\ & 1000 \end{aligned}$	5-55-6041-00	$\begin{gathered} 1.56 \\ (38.69) \end{gathered}$	$\begin{array}{\|c\|} \hline 14.00 \\ (355.60) \end{array}$	$\begin{array}{\|c\|} \hline 11.00 \\ (379.40) \end{array}$	$\begin{array}{\|c\|} \hline \frac{12.500}{12.504} \\ \frac{(317.500)}{(317.602)} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \frac{16.000}{15.995} \\ \frac{(406.400)}{(406.273)} \end{array}$	$\begin{array}{\|c\|} \hline 16.19 \\ (441.16) \end{array}$	$\begin{gathered} .62 \\ (15.88) \end{gathered}$	5/8-11 x 3/4 deep	$\begin{array}{\|c} 8.62 \\ (219.08) \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{array}{\|c} .25 \\ (6.35) \end{array}$	$\begin{array}{\|c} 1.37 \\ (34.80) \end{array}$	\$2,800	C1

* 1/2-13 flat head screws are supplied with adapter
${ }^{* *}$ When adding an adapter to a hazardous location brake, refer to the "mounting requirements" on the product page for the recommended brake series for accommodating adapters.

Brake Side

Kits include the foot mounting bracket and hardware to fit the BF mounting holes.

Dimensions for estimating only. For installation purposes, request certified prints.

Brake Series	Torque	Foot Mounting Kit Number	Dimensions in Inches (Dimensions in Millimeters)																		Wgt.	List Price	
			A	AJ	AK	B	BB	BF		C	D	E	FA	FB	G	H	J	K	L	M			
								No.	Thd.											No.			
56,000	1.5-25	5-55-5023-00	$\begin{gathered} 7.00 \\ (177.80) \end{gathered}$	$\begin{gathered} 5.88 \\ (149.22) \end{gathered}$	$\begin{gathered} \frac{4.499}{4.498} \\ \left(\frac{114.275}{114.249}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline 2.38 \\ (60.32) \end{array}$	$\begin{gathered} .12 \\ (3.18) \end{gathered}$	2	3/8-16	$\begin{gathered} 6.50 \\ (165.10) \end{gathered}$	$\begin{gathered} 3.50 \\ (88.90) \end{gathered}$	$\begin{array}{\|c\|} \hline 2.88 \\ (73.02) \end{array}$	$\begin{array}{\|c\|} \hline 1.50 \\ (38.10) \end{array}$	-	$\begin{gathered} .38 \\ (9.52) \end{gathered}$	$\begin{gathered} .41 \\ (10.32) \end{gathered}$	$\begin{array}{\|c\|} 1.50 \\ (38.10) \end{array}$	$\begin{array}{\|c\|} \hline .50 \\ (12.70) \end{array}$	$\begin{array}{\|c\|} \hline 2.50 \\ (63.50) \end{array}$	2	4.5	\$500.00	B4
87,000	6-105	5-55-7021-00	$\left\|\begin{array}{c} 8.62 \\ (219.08) \end{array}\right\|$	$\begin{gathered} 7.25 \\ (184.15) \end{gathered}$	$\begin{gathered} \frac{8.499}{8.498} \\ \left(\frac{215.875}{215.849}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline 3.00 \\ (76.20) \end{array}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	4	1/2-13	$\left\lvert\, \begin{gathered} 8.62 \\ (218.95) \end{gathered}\right.$	$\left\|\begin{array}{c} 5.00 \\ (127.00) \end{array}\right\|$	$\begin{array}{\|c} 3.56 \\ (90.49) \end{array}$	$\begin{gathered} 2.00 \\ (50.80) \end{gathered}$	-	$\begin{gathered} .38 \\ (9.52) \end{gathered}$	$\begin{gathered} .53 \\ (13.49) \end{gathered}$	$\begin{gathered} 1.62 \\ (41.28) \end{gathered}$	$\begin{array}{\|c\|} \hline .56 \\ (14.29) \end{array}$	$\begin{gathered} 5.75 \\ (146.05 \end{gathered}$	2	7	575.00	B2
81,000	$125-230$ $125-550$	5-55-2022-00	$\begin{gathered} 15.50 \\ (393.70) \end{gathered}$	$\begin{array}{\|c\|} \hline 11.00 \\ (279.40) \end{array}$	$\begin{gathered} \frac{12.499}{12.498} \\ \left(\frac{317.475}{317.449}\right) \end{gathered}$	$\left\|\begin{array}{c} 7.00 \\ (177.80) \end{array}\right\|$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	4	5/8-11	$\left\lvert\, \begin{gathered} 13.25 \\ (336.55) \end{gathered}\right.$	$\left\|\begin{array}{c} 8.50 \\ (215.90) \end{array}\right\|$	$\left\|\begin{array}{c} 6.88 \\ (174.62) \end{array}\right\|$	$\begin{array}{\|c\|} \hline 2.00 \\ (50.80) \end{array}$	$\left\|\begin{array}{c} 4.00 \\ (101.60) \end{array}\right\|$	$\begin{array}{\|c\|} \hline .62 \\ (15.88) \end{array}$	$\begin{gathered} .69 \\ (17.46) \end{gathered}$	$\begin{array}{\|c\|} \hline 3.00 \\ (76.20) \end{array}$	$\begin{array}{\|c\|} \hline .88 \\ (22.22) \end{array}$	$\left\|\begin{array}{c} 9.00 \\ (228.60) \end{array}\right\|$	4	40	1,325.00	C1
86,000	$\begin{aligned} & 500- \\ & 1000 \end{aligned}$	5-55-6021-00	$\begin{gathered} 18.25 \\ (463.55) \end{gathered}$	$\begin{gathered} 14.00 \\ (355.60) \end{gathered}$	$\begin{array}{\|c\|} \hline \frac{16.000}{15.995} \\ \left(\frac{406.400}{406.273}\right) \end{array}$	$\left\lvert\, \begin{gathered} 8.00 \\ (203.20) \end{gathered}\right.$	$\begin{gathered} .22 \\ (5.56) \end{gathered}$	4	5/8-11	$\begin{gathered} 17.00 \\ (431.80) \end{gathered}$	$\left\|\begin{array}{c} 10.88 \\ (276.22) \end{array}\right\|$	$\left\|\begin{array}{c} 6.38 \\ (161.92) \end{array}\right\|$	$\begin{array}{\|c\|} \hline 3.38 \\ (85.72) \end{array}$	$\begin{array}{\|c\|} \hline 3.00 \\ (76.20) \end{array}$	$\begin{gathered} 1.00 \\ (25.40) \end{gathered}$	$\begin{array}{\|c\|} .81 \\ (20.64) \end{array}$	$\left\|\begin{array}{c} 4.12 \\ (104.78) \end{array}\right\|$	$\begin{gathered} 1.22 \\ (30.96) \end{gathered}$	$\left\|\begin{array}{c} 8.50 \\ (215.90) \end{array}\right\|$	4	75	3,900.00	C1

Dimensions for C-Face Brake Motor Systems

Brakes Externally Wired to Motor

C-face motor with double shaft extension.

Stearns Disc Brakes are designed to mount on standard C-face motors having the same dimensions and tolerances on the accessory end as on the drive end. They also mount on foot mounting brackets and machine mounting faces having the same mounting dimensions and tolerances. Some motor accessory end C-face may differ from the drive end.

Dimensions for
frames where AJ is greater than AK

Drive End Dimensions (Inches)

Frame Designation	AJ	AK	$\begin{aligned} & \text { BB } \\ & \text { Min. } \end{aligned}$	BF Hole			U	AH	Keyseat			Base to Centerline D
				Number	Tap Size	Bolt Penetration Allowance						
									R	ES Min.	S	
42 C	3.750	3.000	0.16	4	1/4-20		0.375	1.312	0.328		flat	2.62
48 C	3.750	3.000	0.16	4	1/4-20		0.500	1.69	0.453		flat	3.00
56 C	5.875	4.500	0.16	4	3/8-16		0.625	2.06	0.517	1.41	0.188	3.50
143TC and 145TC	5.875	4.500	0.16	4	3/8-16	0.56	0.875	2.12	0.771	1.41	0.188	3.50
182TC and 184TC	7.250	8.500	0.25	4	1/2-13	0.75	1.125	2.62	0.986	1.78	0.250	4.50
182TCH and 184TCH	5.875	4.500	0.16	4	3/8-16	0.56	1.125	2.62	0.986	1.78	0.250	4.50
213TC and 215TC	7.250	8.500	0.25	4	1/2-13	0.75	1.375	3.12	1.201	2.41	0.312	5.25
254 TC and 256TC	7.250	8.500	0.25	4	1/2-13	0.75	1.625	3.75	1.416	2.91	0.375	6.25
284TC and 286TC	9.000	10.500	0.25	4	1/2-13	0.75	1.875	4.38	1.591	3.28	0.500	7.00
284TSC and 286TSC	9.000	10.500	0.25	4	1/2-13	0.75	1.625	3.00	1.416	1.91	0.375	7.00
324 TC and 326TC	11.000	12.500	0.25	4	5/8-11	0.94	2.125	5.00	1.845	3.91	0.500	8.00
324TSC and 326TSC	11.000	12.500	0.25	4	5/8-11	0.94	1.875	3.50	1.591	2.03	0.500	8.00
364 TC and 365TC	11.000	12.500	0.25	8	5/8-11	0.94	2.375	5.62	2.021	4.28	0.625	9.00
364TSC and 365TSC	11.000	12.500	0.25	8	5/8-11	0.94	1.875	3.50	1.591	2.03	0.500	9.00
404TC and 405TC	11.000	12.500	0.25	8	5/8-11	0.94	2.875	7.00	2.450	5.65	0.750	10.00
404TSC and 405TSC	11.000	12.500	0.25	8	5/8-11	0.94	2.125	4.00	1.845	2.78	0.500	10.00
444 TC and 445TC	14.000	16.000	0.25	8	5/8-11	0.94	3.375	8.25	2.880	6.91	0.875	11.00
444TSC and 445TSC	14.000	16.000	0.25	8	5/8-11	0.94	2.375	4.50	2.021	3.03	0.625	11.00
500 Frame Series	14.500	16.500	0.25	4	5/8-11	0.94	12.50

Tolerances (Inches)

AK Dimension, Face Runout, Permissible
Eccentricity of Mounting Rabbet

AK Dimension	Tolerance on AK Dimension		Maximum Face Runout	Maximum Permissible Eccentricity of Mounting Rabbet
	Plus	Minus		0.004
Less than 12 12 and Larger	0.000	0.003	0.004	0.004

Shaft Extension Diameters

Shaft Diameter	Tolerances	
	Plus	Minus
0.2500 to 1.5000, inclusive Over 1.5000 to 6.500, inclusive	0.000 0.000	0.0005 0.001

Width of Shaft Extension Keyseats

Width of Keyseat	Tolerances	
	Plus	Minus
0.188 to 0.750, inclusive Over 0.750 to 1.500, inclusive	0.002 0.003	0.000

Shaft Runout

Shaft Diameter	Maximum Permissible Shaft Runout
0.3750 to 1.625, inclusive Over 1.625 to 6.500, inclusive	0.002
0.003	

SOURCE: ANSI/NEMA Standards Publication No. MG 1-1987; Part 4 and Part 11.

Dimensions for C-Face AC Brake Motor System (cont.)

Accessory End

FC face mounting for accessories, including brakes, on the end opposite the drive end of motor. Some motor accessory end C-face may differ from the drive end. Confirm shaft diameter and bolt circle before ordering.

143TFC to 184TFC Frames, Inclusive

213TFC to 326TFC Frames, Inclusive

Dimensions (Inches)

Frame Designation	FAJ	FAK	FBD Max.	FBF Hole			Hole for Accessory Leads	
				Number	Tap Size	Bolt Penetration Allowance		
							DP	Diameter
143TFC and 145TFC	5.875	4.500	6.50	4	3/8-16	0.56	2.81	0.41
182TFC and 184TFC	5.875	4.500	6.50	4	3/8-16	0.56	2.81	0.41
213TFC and 215TFC	7.250	8.500	9.00	4	1/2-13	0.75	3.81	0.62
254TFC and 256TFC	7.250	8.500	10.00	4	1/2-13	0.75	3.81	0.62
284TFC and 286TFC	9.000	10.500	11.25	4	1/2-13	0.75	4.50	0.62
324TFC and 326TFC	11.000	12.500	14.00	4	5/8-11	0.94	5.25	0.62

NOTE: Standards have not been developed for the shaft extenison diameter and length, and keyseat dimensions.

Tolerances* (Inches)

FAK Dimension, Face Runout, Permissible

Eccentricity of Mounting Rabbet

FAK Dimension	Tolerance on FAK Dimension		Maximum Face Runout	Maximum Permissible Eccentricity of Mounting Rabbet
	Plus	Minus	0.004	0.004
Less than 12	0.000	0.003	0.007	0.007

* Tolerance requirement on $56, \mathrm{X} 00$ and 87,000 Series Brake kits is .015 T.I.R (total indicated runout shaft to motor register face).

Shaft Runout

Shaft Diameter	Maximum Permissible Shaft Runout
0.3750 to 1.625, inclusive	0.002
Over 1.625 to 6.500 , inclusive	0.003

SOURCE: ANSI/NEMA Standards Publication No. MG 1-1987; Part 4 and Part 11

Torque ft-lb	Minimum Shaft (inches)
75	1.250
105	1.375
125	1.375
175	1.625
230	1.750
330	2.000
440	2.125
500	2.375
750	2.500
1000	2.750

Torque Nm	Minimum Shaft (mm)
4 Nm	$\varnothing 10$ mm
8 Nm	$\varnothing 13 \mathrm{~mm}$
16 Nm	$ø 16 \mathrm{~mm}$
32 Nm	ø20 mm
60 Nm	$ø 25 \mathrm{~mm}$
80 Nm	$ø 28$ mm
150 Nm	$ø 34$ mm
240 Nm	$ø 39$ mm
400 Nm	ø47 mm

Set and Release Times

The models listed below were tested for typical set and release times. Times listed below are defined as follows: $\mathrm{T} 1=$ Total set time to 80% of rated static torque $\mathrm{T} 2=$ Release time, measured as the time from when the power is applied to the brake to the time that the solenoid plunger or armature is fully seated.

NOTE: Times will vary with the motor used, and brakes tested with factory-set air gap. The times shown should be used as a guide only.

SAB T1/T2 Time in Milliseconds

Series	Static Torque lb-ft	Coil Size	T1 AC	T2 AC
56,000	$11 / 2-25$	K4, K4, K4+, M4+	25	14
87,000	$10,15,25,50$	$5 \& 6$	42	20
87,000	$35,75,105$	8	48	20
81,000	All	9	56	27
82,000				

Brake and motor are switched separately. All brakes tested in horizontal position. Coil is energized for >24 hours before testing. Ambient temperature $70^{\circ} \mathrm{F}$ at time of test.

AAB Series 333 Times in Milliseconds

Size	Applied Voltage/Type of Switching	T1	T2
72	DC side switching	23	35
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	103	39
	$460 \mathrm{Vac} / \mathrm{ac}$ side switching/half wave	98	34
90	DC side switching	19	73
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	113	72
	460 Vac/ac side switching/half wave	114	73
	230 Vac connected across motor full wave	357	72
	230 Vac connected across motor /quickset	42	72
112	DC side switching	155	39
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	547	43
	$460 \mathrm{Vac} / \mathrm{ac}$ side switching/half wave	501	54
132	DC side switching	119	100
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	833	101
	460 Vac/ac side switching/half wave	803	106
145	DC side switching	185	186
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	999	192
	460 Vac/ac side switching/half wave	1007	209
	230 Vac connected across motor full wave	1689	192
	230 Vac connected across motor /quickset	368	192
	460 Vac/ac side switching/half wave/With air gap shim	629	223
170	DC side switching	129	163
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	1130	174
	$460 \mathrm{Vac} / \mathrm{ac}$ side switching/half wave	1140	175
196	DC side switching	96	263
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	920	264
	$460 \mathrm{Vac} / \mathrm{ac}$ side switching/half wave	957	274
230	DC side switching	131	264
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	1299	236
	460 Vac/ac side switching/half wave	1303	276
	Tor-Ac 230 Vac/ac side switching/full wave	169	295
	Tor-Ac 230 Vac/ac side switching/full wave/ With air gap shim	122	327
	230 Vac connected across motor quickset/quickrelease/with air gap shim	122	145
278	DC side switching	182	388
	230 Vac/ac side switching/full wave	1807	389
	$460 \mathrm{Vac} / \mathrm{ac}$ side switching/half wave	1689	366

Conversions

English-Metric Conversion Factors

Multiply the base unit by the factor shown to obtain the desired conversion.

Measurement	Base Unit	Factor	Conversion
Length	inch, in (millimeter, mm)	$\begin{aligned} & \hline 25.4 \\ & .03937 \end{aligned}$	(millimeter, mm) inch, in
Torque	pound-feet, lb-ft (newton-meter, Nm) pound-inch, lb-in (newton-meter, Nm) ounce-inch, oz-in (newton-meter, Nm)	$\begin{gathered} 1.355818 \\ .73756 \\ .113 \\ 8.85 \\ .007062 \\ 141.611 \end{gathered}$	(newton-meter, Nm) pound-feet, lb-ft (newton-meter, Nm) pound-inch, lb-in (newton-meter, Nm) ounce-inch, oz-in
Moment of Inertia	pound-feet squared, lb-ft ${ }^{2}$ (kilogram-meter squared, kgm^{2})	$\begin{gathered} .042 \\ 23.81 \end{gathered}$	(kilogram-meter squared, kgm^{2}) pound-feet squared, lb-ft ${ }^{2}$
Kinetic Energy	foot-pound, ft-lb (joule, J)	$\begin{gathered} 1.355818 \\ .73756 \end{gathered}$	(joule, J) foot-pound, ft-lb
Weight	pound, lb (kilogram, kg)	$\begin{aligned} & .453592 \\ & 2.20462 \end{aligned}$	(kilogram, kg) pound, lb
Horsepower (English)	horsepower, hp (kilowatt, kW)	$\begin{aligned} & .7457 \\ & 1.341 \end{aligned}$	(kilowatt, Kw) horsepower, hp
Thermal Capacity	horsepower-seconds per minute, hp-sec/min (watts, W)	$\begin{array}{r} 12.42854 \\ .08046 \end{array}$	(watts W) horsepower-seconds per minute, hp-sec/min
Temperature	degrees Fahrenheit, ${ }^{\circ} \mathrm{F}$ (degrees Celsius, ${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9 \\ & \left({ }^{\circ} \mathrm{C} \times 9 / 5\right)+32 \end{aligned}$	(degrees Celsius, ${ }^{\circ} \mathrm{C}$) degrees Fahrenheit, ${ }^{\circ} \mathrm{F}$

English-English Conversion Factors for Thermal Capacity

Base Unit	Multiply by	To Obtain
horsepower	60.0	$\mathrm{hp}-\mathrm{sec} / \mathrm{min}$
$\mathrm{ft}-\mathrm{lb} / \mathrm{sec}$.109	$\mathrm{hp}-\mathrm{sec} / \mathrm{min}$
$\mathrm{ft}-\mathrm{lb} / \mathrm{min}$.0018	$\mathrm{hp}-\mathrm{sec} / \mathrm{min}$
$\mathrm{in}-\mathrm{lb} / \mathrm{sec}$.009	$\mathrm{hp}-\mathrm{sec} / \mathrm{min}$
$\mathrm{in}-\mathrm{lb} / \mathrm{min}$.00015	$\mathrm{hp}-\mathrm{sec} / \mathrm{min}$

Decimal Equivalents of Fractions

Decimal Equivalent (Inches)		Fraction (Inches)
2-Place	3-Place	
.02	.016	$1 / 64$
.03	.031	$1 / 32$
.05	.047	$3 / 64$
.06	.062	$1 / 16$
.08	.078	$5 / 64$
.09	.094	$3 / 32$
.11	.109	$7 / 64$
.12	.125	$1 / 8$
.14	.141	$9 / 64$
.16	.156	$5 / 32$
.17	.172	$11 / 64$
.19	.188	$3 / 16$
.20	.203	$13 / 64$
.22	.219	$7 / 32$
.23	.234	$15 / 64$
.25	.250	$1 / 4$
.27	.266	$17 / 64$
.28	.281	$9 / 32$
.30	.297	$19 / 64$
.31	.312	$5 / 16$
.33	.328	$21 / 64$
.34	.344	$11 / 32$
.36	.359	$23 / 64$
.38	.375	$3 / 8$

Decimal Equivalent (Inches)		Fraction (Inches)
2-Place	3-Place	
.39	.391	$25 / 64$
.41	.406	$13 / 32$
.42	.422	$27 / 64$
.44	.438	$7 / 16$
.45	.453	$29 / 64$
.47	.469	$15 / 32$
.48	.484	$31 / 64$
.50	.500	$1 / 2$
.52	.516	$33 / 64$
.53	.531	$17 / 32$
.55	.547	$35 / 64$
.56	.562	$9 / 16$
.58	.578	$37 / 64$
.59	.594	$19 / 32$
.61	.609	$39 / 64$
.62	.625	$5 / 8$
.64	.641	$41 / 64$
.66	.656	$21 / 32$
.67	.672	$43 / 64$
.69	.688	$11 / 16$
.70	.703	$45 / 64$
.72	.719	$23 / 32$
.73	.734	$47 / 64$
.75	.750	$3 / 4$

Decimal Equivalent (Inches)		Fraction (Inches)
2-Place	3-Place	
.77	.766	$49 / 64$
.78	.781	$25 / 32$
.80	.797	$51 / 64$
.81	.812	$13 / 16$
.83	.828	$53 / 64$
.84	.844	$27 / 32$
.86	.859	$55 / 64$
.88	.875	$7 / 8$
.89	.891	$57 / 64$
.91	.906	$29 / 32$
.92	.922	$59 / 64$
.94	.938	$15 / 16$
.95	.958	$61 / 64$
.97	.969	$31 / 32$
.98	.984	$63 / 64$
1.00	1.000	1

Application Engineering

Introduction

Information and guidelines provided in the application section are intended for general selection and application of spring set brakes. Unusual operating environments, loading or other undefined factors may affect the proper application of the product. Stearns application services are available to assist in proper selection or to review applications where the specifier may have questions.
A spring set brake is used to stop and hold a rotating shaft. Generally the brake is mounted to an electric motor, but can also be mounted to gear reducers, hoists, machinery or utilize a foot mount kit.
The brake should be located on the high speed shaft of a power transmission system. This permits a brake with the lowest possible torque to be selected for the system.
Spring set disc brakes use friction to stop (dynamic torque) and hold (static torque) a load. Energy of the motor rotor and moving load is converted to thermal energy (heat) in the brake during deceleration. The brakes are power released, spring applied. No electrical current is required to maintain the spring set condition.
The system designer will need to consider the mount surface and match the brake to the load and application. Factors include: brake torque, stopping time, deceleration rate, load weight and speed, location and environment. Brake thermal ratings, electrical requirements and environmental factors are discussed in separate sections.

Electrical Considerations

Solenoid actuated brakes (SAB's) are available with standard motor voltages, frequencies and Class B or H coil insulation. Most models can be furnished with either single or dual voltage coils. Coils in most models are field replaceable.
Inrush and holding amperage information is published for the common coil voltages and factory available for other voltages or frequencies. Amperage information for specific coil sizes is provided for selection of wire size and circuit protection at brake installation. Fixed voltage - 50/60 Hz dual frequency coils are available in many models.
All SAB AC coils are single phase and can be wired to either single or three phase motors without modifications. All solenoid coils have a voltage range of $+/-10 \%$ of the rated nameplate voltage at the rated frequency. Instantaneous rated voltage must be supplied to the coil to insure proper solenoid pull in and maximum coil cycle rate. The plunger rapidly seats in the solenoid and the
amperage requirements drops to a holding amperage value.
Instantaneous voltage must be supplied to the coil to insure proper solenoid pull-in and maximum coil cycle rate.
Because Stearns Solenoid Actuated Brakes (SAB's) require low current to maintain the brake in the released position, the response time to set the brake can be affected by EMF voltages generated by the motor windings. It may be necessary to isolate the brake coil from the motor winding.
The solenoid coil cycle rate limits the engagements per minute of a static or holding duty brake. Brake thermal performance, discussed in another section, limits engagements per minute in dynamic applications.
Class B insulation is standard in most SAB models, class H coil insulation is optional and is recommended for environments above $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, or rapid cycling applications.
Armature actuated brakes (AAB's) are available in standard DC voltages. Available AC rectification is listed in the catalog section. Wattage information is provided in the catalog pages. Unlike solenoid actuated brakes, armature actuated brakes do not have inrush amperage. Coil and armature reaction time and resulting torque response time information is available. Like SAB, mechanical reaction time depends on typical application factors including load, speed and position.
Electrical response time and profiles are unique to the SAB and AAB. Reaction time requirements should be considered when selecting or interchanging brakes.
All Stearns brake coils are rated for continuous duty and can be energized continually without overheating. The coil heating effect is greatest at coil engagement due to engaging, pull in or inrush amperage.
Temperature limits as established by UL controls standards are:
Class A insulation $221^{\circ} \mathrm{F}\left(105^{\circ} \mathrm{C}\right)$
Class B insulation $\quad 266^{\circ} \mathrm{F}\left(130^{\circ} \mathrm{C}\right)$ Class H insulation $356^{\circ} \mathrm{F}\left(180^{\circ} \mathrm{C}\right)$.

Types of Applications

In order to simplify the selection of a disc brake, loads can be classified into two categories, non-overhauling and overhauling.
Loads are classified as non overhauling, if (1) no components of the connected equipment or external material undergo a change of height, such as would occur in hoisting, elevating or lowering a load, and (2) there is only rotary motion in a horizontal plane. For example, a loaded conveyor operating in a horizontal plane
would be typical of a non-overhauling load.
If the same conveyor were transporting material to a lower level, it would be classified as an overhauling load. The external material or load undergoes a change in height, with the weight of the load attempting to force the conveyor to run faster than its design speed or to overhaul.
Non-overhauling loads require braking torque only to stop the load and will remain at rest due to system friction. Overhauling loads, such as a crane hoist, have two torque requirements. The first requirement is the braking torque required to stop the load, and the second requirement is the torque required to hold the load at rest. The sum of these requirements is considered when selecting a brake for an overhauling load.

Alignment

Requirements per NEMA:
Permissible ECCENTRICITY of mounting rabbet (AK dimension):
42C to 286TC frames inclusive is 0.004 " total indicator reading. 324TC to 505TC frames inclusive is 0.007 " total indicator reading.
Face Runout:
42C to 286TC frames inclusive is 0.004 " total indicator reading.
If a customer furnishes a face on the machine for brake mounting, the same tolerances apply. Floor mounted brakes must be carefully aligned within 0.005 " for concentricity and angular alignment. Use of dowels to insure permanent alignment is recommended.
In offset brake mount locations such as fan covers, cowls or jack shafting, proper mount rigidity and bearing support must be provided. Spring set frictional brakes characteristically have a rapid stop during torque application which may affect the mount surface or contribute to shaft deflection.
Printed installation information is published and available on all Stearns spring set brakes.

Determining Brake Torque

Torque ratings

Brake torque ratings are normally expressed as nominal static torque. That is, the torque required to begin rotation of the brake from a static, engaged condition. This value is to be distinguished from dynamic torque, which is the retarding torque required to stop a linear, rotating or overhauling load.

As a general rule, a brake's dynamic torque is approximately 80% of the static torque rating of the brake for stopping time up to one second. Longer stopping time will produce additional brake heat and possible fading (reduction) of dynamic torque. The required dynamic torque must be converted to a static torque value before selecting a brake, using the relationship:

$$
T_{\mathrm{s}}=\frac{\mathrm{T}_{\mathrm{d}}}{0.8}
$$

Where, $\mathrm{T}_{\mathrm{S}}=$ Static torque, lb - ft

$$
\begin{aligned}
T_{\mathrm{d}}= & \text { Dynamic torque, } \mathrm{lb}-\mathrm{ft} \\
0.8= & \text { Constant } \\
& \text { (derating factor) }
\end{aligned}
$$

All Stearns brakes are factory burnished and adjusted to produce no less than rated nominal static torque. Burnishing is the initial wear-in and mating of the rotating friction discs with the stationary metallic friction surfaces of the brake.
Although brakes are factory burnished and adjusted, variations in torque may occur if components are mixed when disassembling and reassembling the brake during installation. Further burnishing may be necessary after installation. Friction material will burnish under normal load conditions. Brakes used as holding only duty require friction material burnishing at or before installation to insure adequate torque.
When friction discs are replaced, the brake must be burnished again in order to produce its rated holding torque.

System Friction

The friction and rolling resistance in a power transmission system is usually neglected when selecting a brake. With the use of anti-friction bearings in the system, friction and rolling resistance is usually low enough to neglect. Friction within the system will assist the brake in stopping the load. If it is desired to consider it, subtract the frictional torque from the braking torque necessary to decelerate and stop the load. Friction and rolling resistance are neglected in the examples presented in this guide.

Non-overhauling Loads

There are two methods for determining brake torque for non-overhauling loads. The first method is to size the brake to the torque of the motor. The second is to select a brake on the basis of the total system or load inertia to be stopped.

Selecting Brake Torque from the Motor Data

Motor full-load torque based or nameplate horsepower and speed can be used to select a brake. This is the most common method of selecting a brake torque rating due to its simplicity.

This method is normally used for simple rotary and linear inertial loads. Brake torque is usually expressed as a percent of the full load torque of the motor. Generally this figure is not less than 100% of the motor's full load torque. Often a larger service factor is considered. Refer to Selection of Service Factor.

The required brake torque may be calculated from the formula:

$$
\mathrm{T}_{\mathrm{S}}=\frac{5,252 \times \mathrm{P}}{\mathrm{~N}} \times \mathrm{SF}
$$

Where, $\mathrm{T}_{\mathrm{S}}=$ Static brake torque, $\mathrm{lb}-\mathrm{ft}$

$$
P=\text { Motor horsepower, hp }
$$

$\mathrm{N}=$ Motor full load speed, rpm
SF = Service factor
5,252 $=$ Constant
Match the brake torque to the hp used in the application. When an oversized motor hp has been selected, brake torque based on the motor hp may be excessive for the actual end use.
Nameplate torque represents a nominal static torque. Torque will vary based on combinations of factors including cycle rate, environment, wear, disc burnish and flatness. Spring set brakes provide a rapid stop and hold and are generally not used in repeat positioning applications.

Selection of Service Factor

A service factor is applied to the basic drive torque calculation. The SF compensates for any tolerance variation, data inaccuracy, unplanned transient torque and potential variations of the friction disc.
When using the basic equation: $\mathrm{T}=(\mathrm{hp} \times 5252) / \mathrm{rpm}$ with nonoverhauling loads, a service factor of 1.2 to 1.4 is typical. Overhauling loads with unknown factors such as reductions may use a service factor of 1.4 to 1.8 .
Spring set brakes combined with variable frequency drives use service factors ranging from 1.0 to 2.0 (2.0 for holding duty only) depending on the system design. These holding duty brakes must be wired to a separate dedicated power supply.
Occasionally, a brake with a torque rating less than the motor full load torque or with a service factor less than 1.0 is selected. These holding or soft stop applications must be evaluated by the end user or system designer to insure adequate sizing and thermal capacity.
Typically a brake rated 125% of the motor full load torque, or with a 1.25 service factor, provides a stop in approximately the same time as that required for the motor to accelerate the load to full load speed.

Occasionally a motor is oversized or undersized for the load or application. In these situations, the load inertia and desired stopping time calculations should be used rather than relying on the service factor method alone.
Service factor selection can be based on motor performance curves. Motor rotor and load inertia should be considered in this selection process. Depending on the motor design (NEMA A, B, C and D), rpm and horsepower, the maximum torque is either the starting or breakdown torque. A NEMA design B, 3 phase, squirrel cage design motor at breakdown torque produces a minimum of 250% the full load torque. A service factor of 2.5 would be selected. Typical service factors depending on NEMA motor design are: NEMA design A or B: 1.75 to 3.0, NEMA design C: 1.75 to 3.0 and NEMA design D: not less than 2.75.
A brake with an excessive service factor may result in system component damage, an unreasonably rapid stop or loss of load control. A SF above 2.0 is not recommended without evaluation by the end user or system designer.
Example 1: Select brake torque from motor horsepower and speed.

$$
\begin{aligned}
& \text { Given: } \begin{aligned}
& \text { Motor power }(\mathrm{P})-5 \mathrm{hp} \\
& \text { Motor speed }(\mathrm{N})-1,750 \mathrm{rpm} \\
& \text { Service factor }(\mathrm{SF})-1.4 \\
& \mathrm{~T}=\frac{5,252 \times \mathrm{P}}{\mathrm{~N}} \times \mathrm{SF} \\
&=\frac{5,252 \times 5}{1,750} \times 1.4 \\
& \mathrm{~T}=21 \mathrm{lb} \mathrm{ft}
\end{aligned}
\end{aligned}
$$

A brake having a standard rating of $25 \mathrm{lb}-\mathrm{ft}$ nominal static torque would be selected.
Example 2 illustrates selection of a brake to provide proper static torque to hold a load if dynamic braking were used to stop the load.
Example 2: Select a brake to hold a load in position after some other method, such as dynamic braking of the motor, has stopped all rotation.
Given: Weight of load (W)-5 lb
Drum radius (R)-2 ft
Service factor (SF) - 1.4

The static holding torque is determined by the weight of the load applied at the drum radius. A service factor is applied to ensure sufficient holding torque is available in the brake.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{S}} & =\mathrm{F} \times \mathrm{R} \times \mathrm{SF} \\
& =5 \times 2 \times 1.4 \\
\mathrm{~T}_{\mathrm{S}} & =14 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Sizing the Brake to the Inertial Load

For applications where the load data is known, where high inertial loads exist, or where a stop in a specified time or distance is required, the brake should be selected on the basis of the total inertia to be retarded. The total system inertia, reflected to the brake shaft speed, would be:

$$
\begin{aligned}
W \mathrm{k}_{\mathrm{T}}^{2}= & \mathrm{W} \mathrm{k}_{\mathrm{B}}^{2}+\mathrm{W} \mathrm{k}_{\mathrm{M}}^{2}+\mathrm{Wk}_{\mathrm{L}}^{2} \\
\mathrm{~W} \text { here: } \mathrm{W} \mathrm{k}_{\mathrm{T}}^{2}= & \text { Total inertia reflected to } \\
& \text { the brake, } \mathrm{lb}-\mathrm{ft}^{2} \\
W \mathrm{k}_{\mathrm{B}}^{2}= & \text { Inertia of brake, } \mathrm{lb}-\mathrm{ft}^{2} \\
\mathrm{~W} \mathrm{k}_{\mathrm{M}}^{2}= & \text { Inertia of motor rotor, } \mathrm{lb}-\mathrm{ft}^{2} \\
\mathrm{~W} \mathrm{k}_{\mathrm{L}}^{2}= & \text { Equivalent inertia of } \\
& \text { load reflected to brake } \\
& \text { shaft, } \mathrm{lb}-\mathrm{ft}^{2}
\end{aligned}
$$

Other significant system inertias, including speed reducers, shafting, pulleys and drums, should also be considered in determining the total inertia the brake would stop.

If any component in the system has a rotational speed different than the rotational speed of the brake, or any linear moving loads are present, such as a conveyor load, their equivalent inertia in terms of rotary inertia at the brake rotational speed must be determined. The following formulas are applicable:

Rotary motion:

```
Equivalent \(W k_{E}^{2}=W k_{L}^{2}\left(\frac{N_{L}}{N_{B}}\right)^{2}\)
Where,
    Equivalent \(\mathrm{Wk}_{\mathrm{B}}^{2}=\) Inertia of rotating
                        load reflected to
                brake shaft, Ib-ft \({ }^{2}\)
            \(\mathrm{Wk}_{\mathrm{L}}^{2}=\) Inertia of rotating
                load, lb-ft \({ }^{2}\)
            \(\mathrm{N}_{\mathrm{L}}=\) Shaft speed
                at load, rpm
            \(\mathrm{N}_{\mathrm{B}}=\) Shaft speed
                at brake, rpm
```


Horizontal Linear Motion

$$
\text { Equivalent } W k_{W}^{2}=W\left(\frac{V}{2 \pi N_{B}}\right)^{2}
$$

Where,

$$
\begin{aligned}
\text { Equivalent } \mathrm{W}_{\mathrm{W}}^{2}= & \text { Equivalent inertia of } \\
& \text { linear moving load } \\
& \text { reflected to brake } \\
& \text { shaft, lb- } \mathrm{ft}^{2} \\
\mathrm{~W}= & \text { Weight of linear } \\
& \text { moving load, lb } \\
\mathrm{V}= & \text { Linear velocity } \\
& \text { of load, ft/min } \\
\mathrm{N}_{\mathrm{B}}= & \text { Shaft speed } \\
& \text { at brake, } \mathrm{rpm}
\end{aligned}
$$

Once the total system inertia is calculated, the required average dynamic braking torque can be calculated using the formula:

$$
T_{d}=\frac{W k_{T}^{2} \times N_{B}}{308 \times t}
$$

Where, $T_{d}=$ Average dynamic braking torque, $\mathrm{lb}-\mathrm{ft}$

$$
\begin{aligned}
\mathrm{Wk}_{\mathrm{T}}^{2} & =\text { Total inertia reflected } \\
& \text { to brake, } \mathrm{lb}-\mathrm{ft}^{2} \\
\mathrm{~N}_{\mathrm{B}} & =\text { Shaft speed at } \\
& \text { brake, rpm } \\
\mathrm{t} & =\text { Desired stopping } \\
& \text { time, sec } \\
308 & =\text { Constant }
\end{aligned}
$$

The calculated dynamic torque is converted to the static torque rating using the relationship:

$$
\begin{aligned}
T_{\mathrm{s}} & =\frac{T_{\mathrm{D}}}{0.8} \\
\text { Where, } \mathrm{T}_{\mathrm{s}} & =\begin{array}{l}
\text { Brake static } \\
\text { torque, } \mathrm{lb}-\mathrm{ft}
\end{array} \\
\mathrm{~T}_{\mathrm{d}} & =\begin{array}{l}
\text { System dynamic } \\
\text { torque, } \mathrm{lb}-\mathrm{ft}
\end{array}
\end{aligned}
$$

Examples 3, 4, 5 and 6 illustrate how brake torque is determined for nonoverhauling loads where rotary or horizontal linear motion is to be stopped.

Example 3: Select a brake to stop a rotating flywheel in a specified time.
Given, Motor speed $\left(\mathrm{N}_{\mathrm{M}}\right)-1,750 \mathrm{rpm}$ Motor inertia $\left(\mathrm{Wk}_{\mathrm{M}}^{2}\right)-0.075 \mathrm{lb}-\mathrm{ft}^{2}$ Flywheel inertia $\left(\mathrm{Wk}_{\mathrm{FW}}{ }^{2}\right)-4 \mathrm{lb}-\mathrm{ft}^{2}$ Brake inertia $\left(\mathrm{Wk}_{\mathrm{B}}^{2}\right)-0.042 \mathrm{lb}-\mathrm{ft}^{2}$ Required stopping time (t) - 1 sec
First determine the total inertia to be stopped,

$$
\begin{aligned}
\mathrm{Wk}_{\mathrm{T}}^{2} & =\mathrm{Wk}_{\mathrm{M}}^{2}+\mathrm{Wk}_{\mathrm{FW}}^{2}+\mathrm{W} \mathrm{k}_{\mathrm{B}}^{2} \\
& =0.075+4+0.042 \\
\mathrm{Wk}_{\mathrm{T}}^{2} & =4.117 \mathrm{lb}-\mathrm{ft}^{2}
\end{aligned}
$$

The dynamic braking torque required to stop the total inertia in 1 second is,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{d}} & =\frac{\mathrm{W} \mathrm{k}_{\mathrm{T}}^{2} \times \mathrm{N}_{\mathrm{BM}}}{308 \times \mathrm{t}} \\
& =\frac{4.117 \times 1,750}{308 \times 1} \\
\mathrm{~T}_{\mathrm{d}} & =23.4 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Converting T_{d} to static torque

$$
\begin{aligned}
\mathrm{T}_{\mathrm{s}} & =\frac{\mathrm{T}_{\mathrm{d}}}{0.8} \\
& =\frac{23.4}{0.8} \\
\mathrm{~T}_{\mathrm{S}} & =29.3 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

A brake having a standard static torque rating of $35 \mathrm{lb}-\mathrm{ft}$ would be selected. Since a brake with more torque than necessary to stop the flywheel in 1 second is selected, the stopping time would be,

$$
\begin{aligned}
t= & \frac{W K_{T}^{2} \times N_{B M}}{308 \times T_{d}} \\
= & \frac{W K_{T}^{2} \times N_{B M}}{308 \times\left(0.8 T_{S}\right)} \\
& \frac{4.117 \times 1,750}{308 \times(0.8 \times 35)} \\
t= & 0.84 \mathrm{sec}
\end{aligned}
$$

See section on Stopping Time and Thermal Information.
Example 4: Select a brake to stop a rotating flywheel, driven through a gear reducer, in a specified time.

Given: Motor speed $\left(N_{M}\right)-1,800 \mathrm{rpm}$
Motor inertia ($\mathrm{Wk}_{\mathrm{w}}^{2}$) $-0.075 \mathrm{lb}-\mathrm{ft}^{2}$
Gear reduction (GR) - 20:1
Gear reducer inertia at high
speed shaft $\left(W k_{G R}^{2}\right)-0.025 \mathrm{lb}-\mathrm{tt}^{2}$
Flywheel inertia $\left(\mathrm{Wk}_{\mathrm{F}}^{2}\right)-20 \mathrm{lb}-\mathrm{ft}^{2}$
Required stopping time (t) -
0.25 sec

First, determine rotating speed of flywheel (N_{Fw})

$$
\begin{aligned}
N_{F W} & =\frac{N_{B M}}{G R} \\
& =\frac{1,800}{20}
\end{aligned}
$$

$\mathrm{N}_{\mathrm{Fw}}=90 \mathrm{rpm}$

Next, the inertia of the flywheel must be reflected back to the motor brake shaft.

$$
\begin{aligned}
W_{b}^{2} & =W \mathbf{k}_{F W}^{2}\left(\frac{N_{F W}}{N_{M}}\right)^{2} \\
& =20\left(\frac{90}{1,800}\right)^{2} \\
W \mathrm{k}_{b}^{2} & =0.05{\mathrm{lb}-\mathrm{ft}^{2}}^{2}
\end{aligned}
$$

Determining the total $W \mathrm{k}^{2}$,

$$
\begin{aligned}
W k_{T}^{2} & =W k_{M}^{2}+W k_{G R}^{2}+W k_{B}^{2} \\
& =0.075+0.025+0.05 \\
W k_{T}^{2} & =0.15{\mathrm{lb}-\mathrm{ft}^{2}}^{\text {2 }}
\end{aligned}
$$

The required dynamic torque to stop the flywheel in 0.25 seconds can now be determined.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{d}}=\frac{W^{2} \mathrm{k}_{T}^{2} \times \mathrm{N}_{\mathrm{BM}}}{308 \times \mathrm{t}} \\
& \mathrm{~T}_{\mathrm{d}}=\frac{0.15 \times 1,800}{308 \times 0.25} \\
& \mathrm{~T}_{\mathrm{d}}=3.5 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Converting dynamic torque to static torque,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{s}} & =\frac{\mathrm{T}_{\mathrm{d}}}{0.8} \\
& =\frac{3.5}{0.8} \\
\mathrm{~T}_{\mathrm{s}} & =4.4 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

A brake having a standard static torque rating of 6 lb -ft would be selected. Since a brake with more torque than necessary to stop the flywheel in 0.25 seconds is selected, the stopping time would be,
$\mathrm{t}=\frac{\mathrm{Wk} \mathrm{K}_{\mathrm{T}} \times \mathrm{N}_{\mathrm{M}}}{308 \times \mathrm{T}_{\mathrm{d}}}$

$$
=\frac{W k_{T}^{2} \times N_{M}}{308 \times\left(0.8 \times T_{s}\right)}
$$

$=\frac{0.15 \times 1,800}{308 \times(0.8 \times 6)}$
$\mathrm{t}=0.18 \mathrm{sec}$

See section on Stopping Time and Thermal Information.

Example 5: Select a brake to stop a load on a horizontal belt conveyor in a specified time.

Given:
Conveyor pulley speed $\left(N_{p}\right)$ - 32 rpm
Weight of load (W) - 30 lb
Conveyor pulley and belt inertia
(Wk ${ }^{2}$) - $4.0 \mathrm{lb}-\mathrm{ft}^{2}$
Conveyor pulley diameter $\left(\mathrm{d}_{\mathrm{p}}\right)-1 \mathrm{ft}$
Required stopping time (t) -0.25 sec

First, convert the rotational pulley speed to linear belt speed $\left(V_{B}\right)$.
$V_{B}=\pi d_{p} N_{p}$

$$
=\pi \times 1 \times 32
$$

$$
\mathrm{V}_{\mathrm{B}}=100.5 \mathrm{ft} / \mathrm{min}
$$

Next, determine inertia of load.

$$
\begin{aligned}
W_{W}^{2} & =W\left(\frac{V_{B}}{2 \pi \times N_{p}}\right)^{2} \\
& =30\left(\frac{100.5}{2 \pi \times 32}\right)^{2} \\
W_{W}^{2} & =7.5 \mathrm{ft}-\mathrm{l} \mathrm{~b}^{2}
\end{aligned}
$$

Then, determine total inertial load

$$
\begin{aligned}
\mathrm{Wk}_{T}^{2} & =W \mathrm{k}_{W}^{2}+\mathrm{W} \mathrm{k}_{P}^{2} \\
& =7.5+4.0 \\
\mathrm{Wk}_{T}^{2} & =11.5 \mathrm{lb}-\mathrm{ft}^{2}
\end{aligned}
$$

The required dynamic torque to stop the conveyor load in 0.25 seconds can now be determined.
$\mathrm{T}_{\mathrm{d}}=\frac{\mathrm{Wk}_{\mathrm{T}}^{2} \times \mathrm{N}_{\mathrm{p}}}{308 \times \mathrm{t}}$
$T_{d}=\frac{11.5 \times 32}{308 \times 0.25}$
$\mathrm{T}_{\mathrm{d}}=4.8 \mathrm{lb}-\mathrm{ft}$
Converting dynamic torque to static torque,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{S}} & =\frac{\mathrm{T}_{\mathrm{d}}}{0.8} \\
& =\frac{4.8}{0.8} \\
\mathrm{~T}_{\mathrm{s}} & =6 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

A brake having a standard static torque rating of 6 lb -ft would be selected. See Thermal Information.
Example 6: Select a brake to stop a trolley crane and its load in a specified time. Brake mounted on wheel axle.

Given:
Weight of crane $\left(W_{C}\right)-2,000 \mathrm{lb}$
Weight of load $\left(W_{L}\right)-100 \mathrm{lb}$
Trolley velocity (V) $-3 \mathrm{ft} / \mathrm{sec}$ or $180 \mathrm{ft} / \mathrm{min}$
Radius of trolley wheel (r) -0.75 ft
Required stopping time (t) - 2 sec

The dynamic braking torque required to stop the trolley crane and load can be determined by one of two methods. The first method is to determine the equivalent inertia of the linearly moving crane and load, then calculate the dynamic braking torque. The second method is to determine the dynamic braking torque directly.
Using the first method, the total weight to be stopped is determined first.

$$
\begin{aligned}
W_{T} & =W_{L}+W_{C} \\
& =100+2,000 \\
W_{T} & =2,100 \mathrm{lb}
\end{aligned}
$$

Next, the rotational speed of the axle $\left(N_{B}\right)$ is calculated.

$$
\begin{aligned}
N_{B} & =\frac{V}{2 \pi r} \\
& =\frac{180}{2 \times \pi \times 0.75} \\
N_{B} & =38.2 \mathrm{rpm}
\end{aligned}
$$

Then, the equivalent inertia of the linearly moving crane and load is determined.

$$
\begin{aligned}
W K_{T}^{2} & =W_{T}\left(\frac{V}{2 \pi N_{B}}\right)^{2} \\
& =2,100\left(\frac{180}{2 \pi 38.2}\right)^{2}
\end{aligned}
$$

$W K_{T}^{2}=1,181 \mathrm{lb}-\mathrm{ft}^{2}$
Finally, the dynamic braking torque required to stop the total inertia in 2 seconds is,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{d}} & =\frac{\mathrm{W} \mathrm{k}_{\mathrm{T}}^{2} \times \mathrm{N}_{\mathrm{B}}}{308 \times \mathrm{t}} \\
& =\frac{1,181 \times 38.2}{308 \times 2} \\
\mathrm{~T}_{\mathrm{d}} & =73 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Using the second method, the dynamic braking torque required to stop the crane and load in 2 seconds can be calculated directly using the formula,

$$
\left.\begin{array}{rl}
\mathrm{T}_{\mathrm{d}}= & \frac{\mathrm{W}_{\mathrm{T}} \mathrm{v}}{\mathrm{gt}} \times \mathrm{r} \\
\text { Where, } \mathrm{T}_{\mathrm{d}}= & \text { Average dynamic } \\
& \text { braking torque, lb-ft } \\
\mathrm{W}_{\mathrm{t}}= & \text { Total weight of linear } \\
& \text { moving load, } \mathrm{lb} \\
\mathrm{v}= & \text { Linear velocity of load, } \\
& \mathrm{ft} / \mathrm{sec} \\
\mathrm{~g}= & \text { Gravitational acceleration } \\
& \text { constant, } 32.2 \mathrm{ft} / \mathrm{sec}^{2}
\end{array}\right\} \begin{aligned}
\mathrm{t}= & \text { Desired stopping time, } \\
& \text { sec } \\
\mathrm{r}= & \text { Length of the moment } \\
& \text { arm (wheel radius), } \mathrm{ft}
\end{aligned}
$$

or, for this example,

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{d}}=\frac{2,100 \times 3}{32.2 \times 2} \times .75 \\
& \mathrm{~T}_{\mathrm{d}}=73 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

For both methods above, the required dynamic braking torque is converted to static torque,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{s}} & =\frac{\mathrm{T}_{\mathrm{d}}}{0.8} \\
& =\frac{73}{0.8} \\
\mathrm{~T}_{\mathrm{s}} & =91 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

A smaller brake could be mounted on the high speed shaft in place of the higher torque on the low speed shaft.
A brake having a standard static torque rating of $105 \mathrm{lb}-\mathrm{ft}$ is selected. Since a brake with more torque than necessary to stop the load in 2 seconds is selected, the stopping time would be,

$$
\begin{aligned}
T & =\frac{W_{T}^{v}}{g T_{d}} \times r \\
& =\frac{W_{T}{ }^{v}}{g \times\left(0.8 \times T_{s}\right)} \times r \\
& =\frac{2,100 \times 3}{32.2 \times(0.8 \times 105)} \times 0.75 \\
t & =1.8 \mathrm{sec}
\end{aligned}
$$

See section on Stopping Time and cycle rates, Thermal Selection. Stops should be under 2 seconds. Longer stops require application test.

Overhauling Loads

Applications with a descending load, such as power lowered crane, hoist or elevator loads, require a brake with sufficient torque to both stop the load, and hold it at rest. Overhauling loads having been brought to rest still invite motion of the load due to the effect of gravity. Therefore, brake torque must be larger than the overhauling torque in order to stop and hold the load. If brake torque is equal to or less than the overhauling torque, there is no net torque available for stopping a descending load.
First, the total system inertia reflected to the brake shaft speed must be calculated.
Second, the average dynamic torque required to decelerate the descending load in the required time is calculated with the formula:

$$
T_{d}=\frac{W k_{T}^{2} \times N_{B}}{308 \times t}
$$

Where, $T_{d}=$ Average dynamic braking torque, lb-ft

$$
\left.\begin{array}{rl}
\mathrm{Wk}_{\mathrm{T}}^{2}= & \text { Total inertia reflected } \\
& \text { to brake, } \mathrm{Ib}-\mathrm{ft}^{2}
\end{array}\right\} \begin{aligned}
\mathrm{N}_{\mathrm{B}}= & \text { Shaft speed at brake, rpm. } \\
& \text { Consider motor slip when } \\
& \text { descending. } \\
\mathrm{t}= & \text { Desired stopping time, } \\
& \text { sec }
\end{aligned}
$$

Third, the overhauling torque reflected to the brake shaft is determined by the formula:

$$
T_{0}=W \times R \times \frac{N_{L}}{N_{B}}
$$

Where, $\mathrm{T}_{0}=$ Overhauling dynamic torque of load reflected to brake shaft, lb-ft
W = Weight of overhauling load, lb
$R=$ Radius of hoist or elevator drum, ft
$N_{\mathrm{L}}=$ Rotating speed of drum, rpm
$\mathrm{N}_{\mathrm{B}}=$ Rotating speed at brake, rpm

Or alternately, the dynamic torque to overcome the overhauling load can be calculated with the formula:

$$
T_{0}=\frac{0.158 \times W \times V}{N_{B}}
$$

Where, $\mathrm{T}_{0}=$ Overhauling dynamic torque of load reflected to brake shaft, lb-ft
W = Weight of overhauling load, lb
$V=$ Linear velocity of descending load, ft/min
$N_{B}=$ Shaft speed at brake, rpm
$0.158=$ Constant

Next, the total dynamic torque required to stop and hold the overhauling load is the sum of the two calculated dynamic torques:

$$
T_{t}=T_{d}+T_{o}
$$

Finally, the dynamic torque must be converted to static brake torque to select a brake:
$T_{s}=\frac{T_{d}}{0.8}$
Where, $\mathrm{T}_{\mathrm{s}}=$ Brake static torque, $\mathrm{lb}-\mathrm{ft}$
$T_{t}=$ System dynamic torque, lb-ft

If the total inertia of the system and overhauling load cannot be accurately determined, a brake rated at 180% the motor full load torque should be selected. Refer to Selection of Service Factor. The motor starting torque may permit a heavier than rated load to be lifted; the brake must stop the load when descending.
Examples 7, 8 and 9 illustrate how brake torque would be determined for overhauling loads. In these examples brakes are selected using the system data rather than sizing them to the motor. Refer to the section on Thermal Calculations to determine cycle rate.
Consider motor slip in calculation. An 1800 rpm motor with 10% slip would operate at $1,620 \mathrm{rpm}$ when the load is ascending and $1,980 \mathrm{rpm}$ when descending. Motor rpm, armature inertia and load position will affect stop time. Brakes on overhauling loads should be wired through a dedicated relay.

Example 7: Select a brake to stop an overhauling load in a specified time.

Given: Cable speed (V) - $667 \mathrm{ft} / \mathrm{min}$
Weight of load (W) - 100 lb
Drum diameter (D) - 0.25 ft
Drum inertia (Wk ${ }^{2}$) - $5 \mathrm{lb}-\mathrm{ft}^{2}$
Required stopping time (t) -1 sec
First, determine brakemotor shaft speed (N_{B}).

$$
\begin{aligned}
\mathrm{NB} & =\frac{V}{\pi D} \\
& =\frac{667}{\pi \times 0.25} \\
\mathrm{NB} & =849 \mathrm{rpm}
\end{aligned}
$$

Then, determine the equivalent inertia of the overhauling load.

$$
\begin{aligned}
W k_{\mathrm{I}}^{2} & =W\left(\frac{\mathrm{~V}}{2 \pi N_{\mathrm{B}}}\right)^{2} \\
& =100\left(\frac{667}{2 \pi \times 849}\right)^{2} \\
W \mathrm{k}_{\mathrm{I}}^{2} & =1.56{\mathrm{lb}-\mathrm{ft}^{2}}^{2}
\end{aligned}
$$

Therefore, the total inertia at the brake is,

$$
\begin{aligned}
\mathrm{Wk}_{T}^{2} & =\mathrm{W} \mathrm{k}_{\mathrm{D}}^{2}+\mathrm{Wk}_{\mathrm{I}}^{2} \\
& =5+1.56 \\
\mathrm{Wk}_{\mathrm{T}}^{2} & =6.56 \mathrm{lb}-\mathrm{ft}^{2}
\end{aligned}
$$

Now, the dynamic torque required to decelerate the load and drum in the required time is calculated.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{d}} & =\mathrm{Wk}_{\mathrm{T}}^{2} \times \mathrm{N}_{\mathrm{B}} \\
& =\frac{6.56 \times 850}{308 \times 1} \\
\mathrm{~T}_{\mathrm{d}} & =18.1 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Next, calculate the dynamic torque required to overcome the overhauling load.

$$
\begin{aligned}
\mathrm{T}_{0} & =\mathrm{W} \times \mathrm{R} \\
& =100 \times \frac{0.25}{2} \\
\mathrm{~T}_{0} & =12.5 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

The total dynamic torque to stop and hold the overhauling load is the sum of the two calculated dynamic torques.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{t}} & =\mathrm{T}_{d}+\mathrm{T}_{0} \\
& =18.1+12.5 \\
\mathrm{~T}_{\mathrm{t}} & =30.6 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Dynamic torque is then converted to static torque.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{s}} & =\frac{\mathrm{T}_{\mathrm{t}}}{0.8} \\
& =\frac{30.6}{0.8} \\
\mathrm{~T}_{\mathrm{s}} & =38.3 \mathrm{lb-ft}
\end{aligned}
$$

A brake having a standard torque rating of $50 \mathrm{lb}-\mathrm{ft}$ is selected based on expected stop time. Since a brake with more torque than necessary to stop the load in 1 second is selected, the stopping time would be,

$$
\begin{aligned}
\mathrm{t} & =\frac{W K_{T}^{2} \times N}{308 \times T_{\mathrm{d}}} \\
\text { where, } \quad \mathrm{T}_{\mathrm{s}} & =\frac{T_{\mathrm{t}}}{0.8} \\
& =\frac{T_{\mathrm{d}}+T_{0}}{0.8} \\
\text { or, } \quad T_{d} & =0.8 T_{\mathrm{s}}-\mathrm{T}_{0} \\
& =(0.8)(50)-12.5 \\
\mathrm{~T}_{\mathrm{d}} & =27.5 \mathrm{lb}-\mathrm{ft} \\
\text { therefore, } \quad \mathrm{t} & =\frac{6.56 \times 850}{308 \times 27.5} \\
& t=0.7 \mathrm{sec}
\end{aligned}
$$

Wire the brake through a dedicated relay on overhauling loads where stop time or distance is critical. See section on

Stopping time.

Example 8: Select a brake to stop an overhauling load driven through gear reducer in a specified time.

Given: Motor speed $\left(N_{M}\right)-1,150 \mathrm{rpm}$
Motor inertia $\left(W K_{(4)}^{2}\right)-0.65 \mathrm{lb}-\mathrm{ft}^{2}$
Gear reduction (GR) - 300:1
Drum diameter (D) -1.58 ft
Weight of load (W) - 4,940 lb
Drum inertia $\left(W_{1}^{2}\right)-600 \mathrm{lb}-\mathrm{ft}^{2}$
Required stopping time (t) - 0.5 sec

First, calculate all inertial loads reflected to the brakemotor shaft.

The rotational speed of the drum is,

$$
\begin{aligned}
N_{D} & =\frac{N_{M}}{G R} \\
& =\frac{1,150}{300} \\
N_{D} & =3.83 \mathrm{rpm}
\end{aligned}
$$

From this, the cable speed can be determined.

$$
\begin{aligned}
V & =N_{D} \times \pi D \\
& =3.83 \times \pi \times 1.58 \\
V & =19.0 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

The equivalent inertia of the load reflected to the brakemotor shaft is,

$$
\begin{aligned}
W k_{\mathrm{I}}^{2} & =\mathrm{W}\left(\frac{\mathrm{~V}}{2 \pi \mathrm{~N}_{\mathrm{BM}}}\right)^{2} \\
& =4,940\left(\frac{19.0}{2 \pi 1,150}\right)^{2} \\
\mathrm{Wk}_{\mathrm{I}}^{2} & =0.034{\mathrm{lb}-\mathrm{ft}^{2}}^{2}
\end{aligned}
$$

The equivalent inertia of the drum at the brakemotor shaft speed is,

$$
\begin{aligned}
W k_{d}^{2} & =W k_{b}^{2}\left(\frac{N_{D}}{N_{B M}}\right)^{2} \\
& =600\left(\frac{3.83}{1,150}\right)^{2}
\end{aligned}
$$

Finally, the total inertia the brake will retard is,

$$
\begin{aligned}
& W \mathrm{~K}_{T}^{2}=W \mathrm{k}_{\mathrm{M}}^{2}+\mathrm{Wk}_{\mathrm{I}}^{2}+\mathrm{Wk}_{\mathrm{d}}^{2} \\
& W \mathrm{k}_{T}^{d}=.0067 \mathrm{lb}-\mathrm{ft}^{2} \\
& W \mathrm{k}_{T}^{2}=0.691 \mathrm{lb}-\mathrm{ft}^{2}
\end{aligned}
$$

The dynamic torque required to decelerate the total inertia is,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{d}} & =\frac{W \mathrm{~K}_{\mathrm{T}}^{2} \times \mathrm{N}_{B M}}{308 \times t} \\
& =\frac{0.691 \times 1,150}{308 \times 0.5} \\
\mathrm{~T}_{\mathrm{d}} & =5.16{\mathrm{lb}-\mathrm{ft}^{2}}^{2}
\end{aligned}
$$

Now, calculate the dynamic torque to overcome the overhauling load.

$$
\begin{aligned}
\mathrm{T}_{0} & =\mathrm{W} \times \mathrm{R}=\mathrm{W} \times 1 / 2 \mathrm{D} \\
& =4,940 \times \frac{1.58}{2} \\
\mathrm{~T}_{0} & =3,903 \mathrm{lb-ft}
\end{aligned}
$$

Which reflected to the brakemotor shaft becomes,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{m}} & =\frac{\mathrm{T}_{\mathrm{o}}}{\mathrm{GR}} \\
& =\frac{3,903}{300} \\
\mathrm{~T}_{\mathrm{m}} & =13.0 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Then, the total dynamic torque to stop and hold the overhauling load is the sum of the two calculated dynamic torques.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{t}} & =\mathrm{T}_{\mathrm{d}}+\mathrm{T}_{\mathrm{m}} \\
& =5.16+13.0 \\
\mathrm{~T}_{\mathrm{t}} & =18.16 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Dynamic torque is then converted to static torque.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{s}} & =\frac{\mathrm{T}_{\mathrm{t}}}{0.8} \\
& =\frac{18.16}{0.8} \\
\mathrm{~T}_{\mathrm{s}} & =22.7 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

A brake having a standard torque rating of $25 \mathrm{lb}-\mathrm{ft}$ is selected.
Example 9: Select a brake to stop and hold a load on an inclined plane (skip hoist).

Given: Motor data
Power (P) - $71 / 2 h p$
Speed $\left(N_{M}\right)-1,165 \mathrm{rpm}$
Rotor inertia (WK ${ }_{2}^{2}$) - $1.4 \mathrm{lb}-\mathrm{ft}^{2}$

Gear reducer data:

Reduction (G_{R}) - 110:1
Inertia at input shaft
($\mathrm{Wk}_{\mathrm{p}}^{2}$) $0.2 \mathrm{lb-ft}^{2}$
Drum data
Diameter (D_{D}) -1.5 ft
Inertia (Wk ${ }^{2}$) - 75 lb - ft^{2}
Pulley data
Diameter (D_{P}) -1.5 ft
Inertia ($W k_{p}^{2}$) $-20 \mathrm{lb}-\mathrm{ft}^{2}$
Bucket weight (W_{B}) - 700 lb
Maximum weight of load
(W_{L}) $-4,000 \mathrm{lb}$
Slope of track (B) -52.7°

Required stopping time (t) -1 sec
The bucket is full when ascending the track and is empty when descending. When selecting a brake the most severe condition would be a fully loaded bucket backed down the hoist track. In normal operation the descending bucket would be empty. In this example, the brake is selected for the most severe condition.
The total torque to stop and hold the bucket and load when descending is the sum of (a) the torque to decelerate the total inertia and (b) the torque required to hold the loaded bucket.
First, calculate all inertial loads reflected to the brakemotor shaft. The rotational speed of the drum is:

$$
\begin{aligned}
\mathrm{N}_{\mathrm{D}} & =\frac{\mathrm{N}_{\mathrm{M}}}{\mathrm{GR}} \\
& =\frac{1,165}{110} \\
\mathrm{~N}_{\mathrm{D}} & =10.6 \mathrm{rpm}
\end{aligned}
$$

From this the cable speed can be determined

$$
\begin{aligned}
\mathrm{V} & =\mathrm{N}_{\mathrm{D}} \times \pi \mathrm{D}_{\mathrm{D}} \\
& =10.6 \times \pi \times 1.5 \\
\mathrm{~V} & =50 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

The equivalent inertia of the loaded bucket reflected to the brakemotor shaft is,

$$
\begin{aligned}
W k_{\mathrm{I}}^{2} & =\mathrm{W}\left(\frac{\mathrm{~V}}{2 \pi N_{M}}\right)^{2} \\
& =4,700\left(\frac{50}{2 \pi \times 1,165}\right)^{2} \\
W k_{\mathrm{I}}^{2} & =0.219 \mathrm{lb}-\mathrm{ft}^{2}
\end{aligned}
$$

Next, the inertia of the pulley and drum are reflected to the brake motor shaft speed so the total inertia at the brake can be determined.
Since the diameters of the pulley and drum are the same, 1.5 ft , their rotational speeds would be the same, 10.6 rpm .
The inertia of the pulley reflected to the brakemotor shaft is,

The inertia of the drum reflected to the brakemotor shaft is,

$$
\begin{aligned}
W k_{\mathrm{d}}^{2} & =W k_{\mathrm{D}}^{2}\left(\frac{N_{0}}{N_{\mathrm{M}}}\right)^{2}=W \mathrm{k}^{2}\left(\frac{1}{\mathrm{GR}}\right)^{2} \\
& =75 \times\left(\frac{1}{110}\right)^{2} \\
\mathrm{Wk}_{\mathrm{d}}^{2} & =0.0062{\mathrm{lb}-\mathrm{ft}^{2}}^{2}
\end{aligned}
$$

The total inertia to be stopped is,

$$
\begin{aligned}
W k_{T}^{2} & =W k_{I}^{2}+W k_{\Gamma}^{2}+W k_{d}^{2}+W k_{R}^{2}+W k_{M}^{2} \\
& =0.219+0.0017+0.0062+0.2+1.4 \\
W k_{T}^{2} & =1.827 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Then, the dynamic torque required to bring the descending bucket and load to rest is,

$$
\begin{aligned}
& T_{d}=\frac{W k_{T}^{2} \times N_{M}}{308 \times T_{d}} \\
& T_{d}=\frac{1.827 \times 1,165}{308 \times 1}
\end{aligned}
$$

The additional dynamic torque required to hold the overhauling load would be determined by the unbalanced component of the force acting along the plane of the hoist track, $\mathrm{W}_{\mathrm{T}} \sin \mathrm{B}$, and the length of the moment arm which is the drum radius $\left(R_{D}\right) . W_{T} \sin B$ is the force necessary to retard downward motion of the loaded hoist bucket.

$$
\begin{aligned}
T_{0} & =W_{T}-\sin B \times R_{D} \\
& =W_{T} \sin B \times 1 / 2 D_{D} \\
& =4,700 \times \sin 52.7^{0} \times 1 / 2(1.5) \\
& =4,700 \times 0.7955 \times 0.75 \\
T_{0} & =2,804 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Which reflected to the brakemotor shaft becomes,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{m}} & =\frac{\mathrm{T}_{0}}{\mathrm{GR}} \\
& =\frac{2,804}{110} \\
\mathrm{~T}_{\mathrm{m}} & =25.5 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Then, the total dynamic torque to stop and hold the descending bucket and load is the sum of the two calculated dynamic torques.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{t}} & =\mathrm{T}_{\mathrm{d}}+\mathrm{T}_{\mathrm{m}} \\
& =6.9+25.5 \\
\mathrm{~T}_{\mathrm{t}} & =32.4 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Converting to static torque,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{S}} & =\frac{\mathrm{T}_{\mathrm{t}}}{0.8} \\
& =\frac{32.4}{0.8} \\
\mathrm{~T}_{\mathrm{s}} & =40.5 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

A brake having a standard torque rating of $50 \mathrm{lb}-\mathrm{ft}$ is selected. Since a brake with more torque than necessary to stop the load in 1 second is selected, the stopping time would be,

$$
\begin{aligned}
& t=\frac{W_{T} \times N_{M}}{308 \times T_{d}} \\
& \text { Where, } T_{S}=\frac{T_{1}}{0.8} \\
&=\frac{T_{d}+T_{m}}{0.8} \\
& \text { or, } T_{d}=0.8 T_{\mathrm{s}}-T_{\mathrm{m}} \\
&=(0.8)(50)-25.5 \\
& T_{d}=14.5 \mathrm{lb}-\mathrm{ft} \\
& \text { therefore, } \\
& t=\frac{1.827 \times 1,165}{308 \times 14.5} \\
& t=0.48 \mathrm{sec}
\end{aligned}
$$

See section on Stopping time.

Stopping Time and Deceleration Rate

In the formulas used to determine dynamic torque, stopping time or " t " in seconds is a desired or assumed value selected on the requirements of the application. For optimum brake performance, a stopping or braking time of 1 second or less is desirable. Stop times between 2 and 3 seconds require test. A brake of insufficient torque rating will lengthen the stopping time. This may result in overheating of the brake to a point where torque falls appreciably. The friction material could carbonize, glaze, or fail.
After determining the braking torque required by a system, it may be necessary to recalculate the stopping time based on the actual brake size selected to insure that stopping time falls within the 0 to 2 second range. Any formula, where the stopping time is a variable, may be rewritten to solve for the new stopping time. For instance, the dynamic torque equation may be transposed as follows:

$$
\begin{aligned}
& T_{d}=\frac{W k^{2} \times N_{B}}{308 \times t} \\
& \text { or, } \quad t=\frac{W K_{T}^{2} \times N_{B}}{308 \times\left(0.8 \times T_{s}\right)} \\
& \text { Where, } t=\text { Stopping time, sec } \\
& W k_{\mathrm{T}}^{2}=\text { Total inertia reflected } \\
& \text { to brake, lb-ft }{ }^{2} \\
& N_{B}=\text { Shaft speed at brake, rpm } \\
& \mathrm{T}_{\mathrm{s}}=\text { Nominal static torque } \\
& \text { rating of brake, lb-ft } \\
& \mathrm{T}_{\mathrm{d}}=\text { Dynamic braking torque } \\
& \left(0.8 \times T_{s}\right) \text {, lb-ft } \\
& 0.8=\text { Constant (derating factor) } \\
& 308=\text { Constant }
\end{aligned}
$$

Brakes are rated in static torque. This value is converted to dynamic torque, as done in the above equation, when stopping time is calculated. That is,

$$
\begin{aligned}
T_{d} & =0.8 \times T_{\mathrm{s}} \\
\text { Where, } \mathrm{T}_{\mathrm{d}} & =\underset{\text { Ib } \mathrm{fb} \mathrm{ft}}{\text { Dic braking torque, }} \\
\mathrm{T}_{\mathrm{s}} & =\begin{array}{l}
\text { Nominal static torque } \\
\text { rating of brake, } \mathrm{lb}-\mathrm{ft}
\end{array}
\end{aligned}
$$

The approximate number of revolutions the brake shaft makes when stopping is:

$$
\begin{aligned}
\text { Revolutions to stop } & =\frac{\mathrm{t} \times \mathrm{N}_{\mathrm{B}}}{120} \\
\text { Where, } \mathrm{t} & =\text { Stopping time, sec } \\
\mathrm{N}_{\mathrm{B}} & =\text { Shaft speed at brake, rpm } \\
120 & =\text { Constant }
\end{aligned}
$$

The average rate of deceleration when braking a linearly moving load to rest can be calculated using the stopping time determined by the above formula and the initial linear velocity of the load.

$$
\begin{aligned}
& a=-\frac{V_{i}}{t} \\
& \text { Where, } a=\text { Deceleration, ft/sec }{ }^{2} \\
& V_{i}=\text { Initial linear velocity of } \\
& \text { load, ft/sec } \\
& t=\text { Stopping time, sec }
\end{aligned}
$$

RPM Considerations

The maximum allowable rotational speed of the brake should not be exceeded in braking. Maximum brake rpm as listed in the catalog is intended to limit stopping time to 2 seconds or less and insure friction disc stability. Brakes are not dynamically balanced because of the low brake inertia.

Determining Required Thermal Capacity

Thermal Ratings

When a brake stops a load, it converts mechanical energy to thermal energy or heat. The heat is absorbed by components of the brake. This heat is then dissipated by the brake. The ability of a given brake to absorb and dissipate heat without exceeding temperature limitations is known as thermal capacity.
There are two categories of thermal capacity for a brake. The first is the maximum energy the brake can absorb in one stop, generally referred to as a "crash" or "emergency" stop. The second is the heat dissipation capability of the brake when it is cycled frequently. To achieve optimum brake performance, the thermal rating should not be exceeded. They are specified for a predetermined maximum temperature rise of the brake friction material.
The ability of a brake to absorb and dissipate heat is determined by many factors, including the design of the brake, the ambient temperature, brake enclosure, position of the brake, the surface that the brake is mounted to, and the altitude.

The rating for a given brake is the maximum allowable. Longer brake life results when the brake has more thermal capacity than a power transmission requires. Much shorter life or brake failure will result when the thermal capacity rating is exceeded. Ratings are determined at an ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$, with the brake in a horizontal position, with a stopping time of 1 second or less, and with no external heat source such as a motor.
Ambient temperature will limit the thermal capacity of a brake. Temperatures above $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ require derating of the thermal capacity rating. For example, at $150^{\circ} \mathrm{F}$, thermal capacity is reduced approximately 30\% (see Derating Thermal Capacity Chart).
CHART: Derating Thermal Capacity

A temperature range of $20^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ is acceptable in most brake applications. Above $104^{\circ} \mathrm{F}$ also consider Class H coil insulation.

Thermal capacity ratings are determined with enclosures on the brake. Other customer furnished covers or cowls may affect a brake's thermal capacity. The effect on thermal capacity should be evaluated. In some cases, thermal capacity may be increased by use of air or liquid cooling. However, provisions must be made to prevent contaminating the brake internally.

Brakes with brass stationary discs are derated 25%.

The mounting position of a brake will also affect thermal capacity. The specified ratings are for brakes mounted in a horizontal position with the solenoid plunger above the solenoid. For brakes mounted in a vertical position, or 15° or more from horizontal, the thermal capacity decreases due to friction disc drag. Brakes are modified for vertical operation to minimize the drag. 2 - and 3 - disc brakes are derated 25%, 4 -disc brakes are derated 33%. 4 - and 5 -disc brakes are not recommended for vertical use.

Thermal capacity ratings are established without external sources of heat increasing the brake temperature. The surface that a brake is mounted to, such as an electric
motor or gear reducer, will limit the heat dissipation capability or thermal capacity of a brake. These sources of heat should be evaluated when determining the thermal requirements of the system for which the brake is selected.

High altitudes may also affect a brake's thermal capacity. Stearns brakes will operate to $10,000 \mathrm{ft}$ above sea level at $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ ambient temperature. At $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ ambient temperature, altitude and temperature adjustments occur. Refer to NEMA MG1-1993 Section 14 for additional information.

CHART: Altitude \& Thermal Capacity

Maximum Energy Absorption

The thermal capacity of a brake is limited by the maximum energy it can absorb in one stop. This factor is important when stopping extremely high inertial loads at infrequent intervals. Such use of a brake requires extensive cooling time before it can be operated again.
The energy a brake is required to absorb in one stop by a given power transmission system is determined by the formulas below. The calculated energy of the system should not exceed the maximum kinetic energy rating of the brake. System energy exceeding the brake's maximum rating may result in overheating of the brake to a point where torque falls appreciably. The friction material of the brake could glaze, carbonize or fail.

In the case of linear loads, the energy that the brake must absorb is kinetic energy. It is determined by the formula:

$$
\begin{aligned}
\mathrm{KE}_{\mathrm{I}} & =\frac{\mathrm{W}^{2}}{2 \mathrm{~g}} \\
\mathrm{KE}_{\mathrm{I}} & =\text { Kinetic energy of linear } \\
& \text { moving load, lb-ft } \\
\mathrm{W} & =\text { Weight of load, lb } \\
\mathrm{v} & =\text { Linear velocity of load, } \mathrm{ft} / \mathrm{sec} \\
\mathrm{~g} & =\begin{array}{l}
\text { Gravitational acceleration } \\
\\
\text { constant, } 32.2 \mathrm{ft} / \mathrm{sec}^{2}
\end{array}
\end{aligned}
$$

In the case of rotational loads, the energy that the brake must absorb is also kinetic energy. It is determined by the formula:

$$
\begin{aligned}
\mathrm{KE}_{\mathrm{r}} & =\frac{\mathrm{Wk}_{\mathrm{F}}^{2} \times \mathrm{N}_{\mathrm{B}}^{2}}{5875} \\
\text { Where, } \mathrm{KE}_{\mathrm{r}} & =\begin{array}{l}
\text { Kinetic energy of linear } \\
\\
\\
\text { load, } \mathrm{lb}-\mathrm{ft}
\end{array} \\
\mathrm{~W} \mathrm{~K}_{\mathrm{T}}^{2} & =\begin{array}{l}
\text { Inertia of the rotating load } \\
\\
\\
\text { reflected to brake shaft, } \mathrm{lb}-\mathrm{ft}^{2} \\
\mathrm{~N}_{\mathrm{B}}
\end{array}=\begin{array}{l}
\text { Shaft speed at brake, rpm } \\
5875
\end{array}=\text { Constant }
\end{aligned}
$$

In the case of overhauling loads, both the kinetic energy of the linear and rotating loads and the potential energy transformed into kinetic energy by the change in height or position must be considered when determining the total energy that the brake must absorb. The potential energy transformed to kinetic energy is determined by the formula:

$$
\begin{aligned}
\mathrm{PE}= & \mathrm{W}_{\mathrm{S}} \\
\text { Where, } \mathrm{PE}= & \text { Change in potential } \\
& \text { energy, ft-lb } \\
\mathrm{W}= & \text { Weight of overhauling } \\
& \text { load, Ib } \\
\mathrm{S}= & \text { Distance load travels, } \mathrm{ft}
\end{aligned}
$$

Thus, the total energy to be absorbed by a brake stoping an overhauling load is:

$$
E_{T}=K E_{I}+K E_{r}+P E
$$

Example 10 illustrates how energy absorption for Example 8 would be determined for one stop.
Example 10: Determine the total energy absorbed by a brake in one stop.
In Example 8, the calculation for total energy to be absorbed would be as follows.

First, calculate the kinetic energy of the linear load. The load weight was $4,940 \mathrm{lb}$ and the velocity is $19 \mathrm{ft} / \mathrm{min}$ or 0.317 $\mathrm{ft} / \mathrm{sec}$. The kinetic energy is:

$$
\begin{aligned}
\mathrm{KE}_{\mathrm{I}} & =\frac{\mathrm{W}^{2}}{2 \mathrm{~g}} \\
& =\frac{4,940 \times 0.317^{2}}{2 \times 32.2} \\
\mathrm{KE}_{\mathrm{I}} & =7.71 \mathrm{ft}-\mathrm{b}
\end{aligned}
$$

Next, calculate the kinetic energy for the rotational load. The motor inertia is 0.65 $\mathrm{lb}-\mathrm{ft}^{2}$ and the drum inertia reflected to the brake shaft speed is $0.0067 \mathrm{lb}-\mathrm{ft}^{2}$. The total rotational inertia at the brakemotor shaft is,

$$
\begin{aligned}
W k_{\mathrm{f}}^{2} & =W k_{\mathrm{M}}^{2}+W k_{\mathrm{d}}^{2} \\
& =0.65+0.0067 \\
W k_{\mathrm{f}}^{2} & =0.6567 \mathrm{lb}-\mathrm{ff}^{2}
\end{aligned}
$$

And the kinetic energy of the rotating components is,

$$
\begin{aligned}
\mathrm{KE}_{\mathrm{r}} & =\frac{W k_{\mathrm{I}}^{2} \times N_{\mathrm{B}}^{2}}{5,875} \\
& =\frac{0.6567 \times 1,150^{2}}{5,875} \\
\mathrm{KE}_{\mathrm{I}} & =147.8 \mathrm{ft-lb}
\end{aligned}
$$

Now, calculate the potential energy converted to kinetic energy due to the change in position of the load while descending. A descending load is the most severe case since potential energy is transformed to kinetic energy that the brake must absorb. A 25 lb -ft brake was selected in Example 8. The 25 lb -ft static torque rating is converted to dymanic torque,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{t}} & =\mathrm{T}_{\mathrm{s}} \times 0.8 \\
& =25 \times 0.8 \\
\mathrm{~T}_{\mathrm{t}} & =20 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Of this torque, $13.0 \mathrm{lb}-\mathrm{ft}$ is required to overcome the overhauling load as determined in Example 8. The dynamic torque available to decelerate the load is,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{d}} & =\mathrm{T}_{\mathrm{t}}-\mathrm{T}_{\mathrm{m}} \\
& =20-13 \\
\mathrm{~T}_{\mathrm{d}} & =7 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

The stopping time resulting from this dynamic torque is,

$$
\begin{aligned}
& t=\frac{W k_{P}^{2} \times N_{M}}{308 \times T_{d}} \\
&=\frac{0.691 \times 1,150}{308 \times 7} \\
& t=0.369 \mathrm{sec}
\end{aligned}
$$

Where, $\mathrm{Wk}^{2}=0.690 \mathrm{lb-ft}^{2}$ is the total inertia the brake is to retard as determined in Example 8. With the load traveling at $19.0 \mathrm{ft} / \mathrm{min}$ or $0.317 \mathrm{ft} / \mathrm{sec}$, the distance it will travel is,

$$
\begin{aligned}
s & =1 / 2 \mathrm{vt} \\
& =1 / 2 \times 0.317 \times 0.369 \\
s & =0.059 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Wire the brake through a dedicated relay on overhauling loads where stop time or distance is critical. The potential energy transformed to kinetic energy in this distance would be,

$$
\begin{aligned}
\mathrm{PE} & =\mathrm{W}_{\mathrm{S}} \\
& =4,940 \times 0.059 \\
\mathrm{PE} & =291 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

Thus, the total energy to be absorbed by the brake would be,

$$
\begin{aligned}
\mathrm{E}_{\mathrm{T}} & =\mathrm{KE} \mathrm{I}_{\mathrm{I}}+\mathrm{KE}+\mathrm{PE} \\
& =7.71+147.8+291 \\
\mathrm{E}_{\mathrm{T}} & =447 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

The $25 \mathrm{lb}-\mathrm{ft}$ brake selected in Example 8 should be capable of absorbing $447 \mathrm{ft}-\mathrm{lb}$ of energy. The brake's maximum kinetic energy absorption rating should exceed this value.

Motor slip and test loads (150\% of load) should be considered both in sizing and thermal calculations.
Brakes overheated in testing will require inspection before using in the standard application.

Heat dissipation in cyclic applications

In general, a brake will repetitively stop a load at the duty cycle that a standard electric motor can repetitively start the load. A brake's thermal capacity is based upon the heat it can absorb and dissipate while cycling. The thermal capacity ratings for brakes are listed in the specification tables for specific brake models.
The energy that a brake is required to absorb and dissipate by a given power transmission system is determined from the total inertia of the load and system, the rotating or linear speed of the load, and the number of times the load is to be stopped in a given time period. The rate of energy dissipation is expressed in horsepower seconds per minute (hp$\mathrm{sec} / \mathrm{min})$. Other common units for energy rates, such as foot pounds per second (ft$\mathrm{lb} / \mathrm{sec}$), can be converted to $\mathrm{hp}-\mathrm{sec} / \mathrm{min}$ using the conversion factors given in the Technical Data section.
Refer to the Thermal Capacity Chart for use above $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ ambient temperature.
For applications demanding optimum brake performance, such as high inertial loads and frequent stops, the rate of energy dissipation required by the system is determined using the following formulas. The calculated rate of energy dissipation should not exceed the thermal capacity of the brake. Thermal dissipation requirements exceeding the brake's rating
may result in overheating of the brake to a point where torque falls appreciably. The friction material of the brake could glaze, carbonize or fail.
For rotating or linear loads, the rate at which a brake is required to absorb and dissipate heat when frequently cycled is determined by the relationship:

$$
\begin{aligned}
& \mathrm{TC}= \frac{\mathrm{Wk}_{\mathrm{I}}^{2} \times \mathrm{N}_{\mathrm{B}}^{2} \times \mathrm{n}}{3.2 \times 10^{6}} \\
& \text { Where, } \mathrm{TC}= \text { Thermal capacity required } \\
& \text { for rotating or linear loads } \\
& \text { hp-sec/min } \\
& \mathrm{Wk}_{\mathrm{T}}^{2}= \text { Total system inertia reflected } \\
& \text { to brake, lb-ft } \\
& \mathrm{N}_{\mathrm{B}}= \text { Shaft speed at brake, rpm } \\
& \mathrm{n}= \text { Number of stops per } \\
& \text { minute, not less than } 1 \\
& 3.2 \times 10^{6}= \text { Constant }
\end{aligned}
$$

The rotating speed enters the formula as a squared function. Therefore, thermal requirements are of particular significance in systems where the brake will be operated at high speeds.

$$
\begin{aligned}
T C= & \frac{\mathrm{E}_{\mathrm{T}} \times \mathrm{n}}{550} \\
\text { Where, } \mathrm{TC}= & \text { Thermal capacity required } \\
& \text { for overhauling loads } \\
& \text { hp-sec/min } \\
\mathrm{E}_{\mathrm{T}} & =\text { Total energy brake } \\
& \text { absorbs, tt-lb } \\
\mathrm{n}= & \text { Number of stops per } \\
& \text { minute, not less than } 1 \\
550= & \text { Constant }
\end{aligned}
$$

For overhauling loads, the rate at which a brake is required to absorb and dissipate heat when frequently cycled is determined by the relationship:
Example 11 illustrates how the required thermal capacity would be determined for Example 4.
Example 11: Determine the thermal capacity required to stop a rotating load frequently.

Referring back to Example 4, the flywheel will be stopped 20 times per minute. The required thermal capacity of the $6 \mathrm{lb}-\mathrm{ft}$ brake selected in this example is determined as follows.
The total inertial load the brake is to retard is $0.15 \mathrm{lb}-\mathrm{ft}^{2}$. The shaft speed of the brake motor is $1,800 \mathrm{rpm}$. Therefore, the required thermal capacity is,

$$
\begin{aligned}
T C & =\frac{W k_{9}^{3} \times N(1) \times n}{3.2 \times 10^{6}} \\
& =\frac{0.15 \times 1,800^{2} \times 20}{3.2 \times 10^{6}}
\end{aligned}
$$

$\mathrm{TC}=3.0 \mathrm{hp}-\mathrm{sec} / \mathrm{min}$

The $6 \mathrm{lb}-\mathrm{ft}$ brake selected in Example 4 should have a thermal capacity rating equal to or greater than $3.0 \mathrm{hp}-\mathrm{sec} / \mathrm{min}$.
A brake with greater thermal capacity will result in greater wear life.
If productivity is to be improved in Example 4 by increasing the cycle rate, the maximum number of stops per minute is determined by the rated thermal capacity of the brake. If the $6 \mathrm{lb}-\mathrm{ft}$ brake selected in Example 4 has rated thermal capacity of $9 \mathrm{hp}-\mathrm{sec} / \mathrm{min}$, the maximum permissible stops per minute would be determined by transposing the above formula to,

$$
\begin{aligned}
\mathrm{n}_{\text {max }} & =\frac{T C_{\text {rated }} \times\left(3.2 \times 10^{6}\right)}{W k^{2} \times N_{N}^{2}} \\
& =\frac{9 \times\left(3.2 \times 10^{5}\right)}{0.15 \times 1,800^{2}} \\
n_{\text {max }} & =59 \text { stops } / \mathrm{min}
\end{aligned}
$$

So, the brake could be operated up to 36 times per minute without exceeding its ability to absorb and dissipate the heat generated by the frequent stops and meet the maximum solenoid cycle rating. Cycle rate cannot exceed the solenoid cycle rate appearing in the catalog.

Electrical Considerations

Please see page 118.

Environmental Considerations

Brakes with standard open enclosures when mounted on NEMA C-face motors are drip-proof, except where a manual release lever has a clearance opening in the housing. The standard enclosure is commonly used on open, drip-proof and enclosed motors operating indoors or in protected outdoor environments.
NEMA 4, IP 54 enclosures are available on most brake models and are commonly used for outdoor installations, or where there are moist, abrasive or dusty environments. Standard and severe duty NEMA 4 enclosures are available in some brake series.

Brakes of various styles and materials for above or below deck on ships and dockside installation are available. The materials are usually specified by the ship designers or Navy specification MIL-B-16392C. Brakes are also available to meet MIL-E-17807B for shipboard weapon and cargo elevators. Refer to Marine, Maritime and Navy Catalog pages.

Brakes Listed by Underwriters Laboratories, Inc. and certified by Canadian Standards Association are available for use in hazardous locations, including Class I, Groups C and D; and Class II, Groups E, F and G. Motormounted, hazardous-location electric disc brakes are listed only when mounted to a Listed hazardous-location motor of the same Class and Group at the motor manufacturer's facility, and where the combination has been accepted by UL or CSA. This procedure completes the hazardous duty assembly of the brake. However, foot-mounted hazardous-location disc brakes that are Listed are also available for coupling to a motor, and may be installed by anyone.
Hazardous-location brakes are not gasketed unless indicated in the brake description. The enclosure prevents flame propagation to the outside atmosphere through controlled clearances. Protection from weather and washdowns must be provided. If the brake is used in a high humidity or low temperature environment, internal electric heaters should be used.

Standard ambient temperature range for brake operation is from $20^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$. Refer to Thermal Ratings section for brake operation at higher ambient temperatures. Heaters may be available for brake operation at low ambient temperatures and high humidity environments. Ductile iron construction and heaters are recommended for prolonged cold climate use.

Conclusion

The spring-set, electrically released disc brake is an important accessory to electric motors used in cycling and holding operations. It is available in a wide variety of enclosures. In most applications, a brake requires no additional wiring, controls or auxiliary electrical equipment. It is simple to maintain since the replaceable items, the friction discs, can be easily changed.
Many spring-set motor brakes are equipped with features such as simple wear adjustment to provide optimum friction disc life, visual wear indicator, torque adjustment and manual release. Featured on some types of brakes is automatic adjustment to compensate for friction disc wear. This feature eliminates the need for periodic adjustment and is advantageous in remote or inaccessible locations. Not all of the brakes on the market provide all of these features, but there are many Stearns motor brakes offering these features.
Care should be exercised in properly selecting a brake giving due consideration to torque as well as environment and thermal requirements.

On applications where all the pertinent information is not available, selection must be based on previous experience of the designer and user, as well as the brake manufacturer, and should be confirmed by tests under actual operating conditions. If the brake is selected with reasonable allowances made for extremes in operating conditions, it will perform its task with little attention or maintenance.

Formulas

The following formulas cover the basic calculations used in brake application engineering.

Required	Given	Formula
Full load motor torque ($\mathrm{T}_{\text {flmt }}$), lb-ft	Horsepower (P), hp Shaft speed (N), rpm 5252 = Constant	$\mathrm{T}_{\mathrm{fn} \mathrm{t}}=\frac{5252 \times \mathrm{P}}{\mathrm{~N}}$
Average dynamic braking torque $\left(T_{d}\right), \mathrm{lb}-\mathrm{ft}$	Total inertia reflected to brake $\left(\mathrm{Wk}^{2}\right)$, lb-ft ${ }^{2}$ Shaft speed at brake (N), rpm Desired stopping time (t), seconds $308=$ Constant	$T_{\mathrm{d}}=\frac{W \mathrm{k}^{2} \times \mathrm{N}}{308 \times \mathrm{t}}$
Static torque (T), lb-ft	Force (F), lb Pulley or drum radius, (R), ft	$\mathrm{T}=\mathrm{F} \times \mathrm{R}$
Overhauling dynamic torque reflected to brake shaft $\left(\mathrm{T}_{\mathrm{o}}\right)$, lb-ft	Weight of overhauling load (W), Ib Linear velocity of descending load (V), $\mathrm{ft} / \mathrm{min}$ Shaft speed at brake (N), rpm 0.158 = Constant	$\mathrm{T}_{\mathrm{O}}=\frac{0.158 \times \mathrm{W} \times \mathrm{V}}{\mathrm{~N}}$
Static torque of brake (T_{s}), Ib-ft (General Guideline)	Dynamic braking torque required $\left(\mathrm{T}_{\mathrm{d}}\right)$, lb-ft 0.8 = Constant (derating factor)	$\mathrm{T}_{\mathrm{S}}=\frac{\mathrm{T}_{\mathrm{d}}}{0.8}$
Inertia of rotating load reflected to brake shaft ($\mathrm{w} \mathrm{k}_{\mathrm{b}}^{2}$), lb-ft2	Inertia of rotating load ($\mathrm{W} \mathrm{k}_{\mathrm{L}}^{2}$), Ib-ft² Shaft speed at load (N_{L}), rpm Shaft speed at brake (N_{B}), rpm	Equivalent $\mathrm{w} \mathrm{k}_{\mathrm{b}}^{2}=\mathrm{W} \mathrm{k}_{\mathrm{L}}^{2}\left(\frac{\mathrm{~N}_{\mathrm{L}}}{\mathrm{N}_{\mathrm{B}}}\right)^{2}$
Equivalent inertia of linear moving load reflected to brake shaft ($\mathrm{w} \mathrm{k}_{\mathrm{w}}^{2}$), lb-ft²	Weight of linear moving load (W), Ib Linear velocity of load (V), ft/min Shaft speed at brake $\left(\mathrm{N}_{\mathrm{B}}\right)$, rpm 2π : = Constant	Equivalent $W \mathrm{k}_{\mathrm{w}}^{2}=\mathrm{W}\left(\frac{\mathrm{V}}{2 \pi \mathrm{~N}_{\mathrm{B}}}\right)^{2}$
Kinetic energy of rotating load, (KE_{r}), ft-lb	Inertia of rotating load reflected to brake shaft (w k b ${ }^{2}$), lb-ft ${ }^{2}$ Shaft speed at brake (N_{B}), rpm 5875 = Constant	$K E_{r}=\frac{W k_{b}^{2} \times N_{B}^{2}}{5875}$
Kinetic energy of linear moving load $\left(\mathrm{KE}_{1}\right)$, ft-lb	Weight of load (W), lb Linear velocity of load (v), ft/sec $\mathrm{g}=$ Gravitational acceleration constant, $32.2 \mathrm{ft} / \mathrm{sec}^{2}$	$K E_{\mathrm{I}}=\frac{\mathrm{W} \mathrm{v}^{2}}{2 g}$
Change in potential energy (PE), ft-lb	Weight of overhauling load (W), Ib Distance load travels (s), ft	$\mathrm{PE}=\mathrm{Ws}$
Total energy absorbed by brake (E_{T}), ft-lb	Total linear kinetic energy, $\left(\mathrm{KE}_{\mathrm{L}}\right)$, ft-lb Total rotary kinetic energy $\left(\mathrm{KE}_{\mathrm{R}}\right)$, ft-lb Potential energy converted to kinetic energy (PE), ft-lb	$\mathrm{E}_{\mathrm{T}}=\mathrm{KE} \mathrm{E}_{\mathrm{L}}+\mathrm{KE} \mathrm{E}_{\mathrm{R}}+\mathrm{PE}$
Thermal capacity required for rotational or linear moving loads (TC), hp-sec/min	Total system inertia reflected to brake shaft ($\mathrm{Wk}{ }_{\mathrm{T}}^{2}$), lb-ft ${ }^{2}$ Shaft speed at brake $\left(\mathrm{N}_{\mathrm{B}}\right)$, rpm Number of stops per minute (n), not less than one $3.2 \times 10^{6}=$ Constant	$\mathrm{TC}=\frac{\mathrm{W} \mathrm{k}_{\mathrm{T}}^{2} \times \mathrm{N}_{\mathrm{B}}^{2} \times \mathrm{n}}{32 \times 10^{6}}$
Thermal capacity required for overhauling loads (TC), hp-sec/min	Total energy brake absorbs (E_{T}), ft-lb Number of stops per minute (n), not less than one $550=$ Constant	$T C=\frac{E_{T} \times n}{550}$
Linear velocity, ft/min	$\begin{aligned} & \mathrm{N}=\mathrm{rpm} \\ & \text { Diameter (D), ft } \end{aligned}$	$\mathrm{V}=\mathrm{N} \pi \mathrm{D}$

[^0]: (1) $\mathrm{X}=0$ or 1.0 designates a 16 in. "AK", 14 in "AJ". 1 designates 16.5 in. "AK", 14.5 in. "AJ".
 (2) Subtract $\$ 530.00$ for brake ordered less hub.
 (3) Foot mounting adds 75 lbs . $(34 \mathrm{~kg})$ to weight.

[^1]: * For DC voltages see sheet 8-078-950-00.

[^2]: *See page 7 for Table 1A
 Variable Endplate.

