

Standard Brake Options

- AC Rectifier (see pages 86-89)
- Tach/encoder mounting
- Space Heater
- Electronic brake release indicator
- Contact Factory for Electronic Wear Indicator
- Thru-Shaft
- Optional external non-maintained/maintained manual release
- Optional IP56 or IP67 conduit box mounted on adapter plate. Wiring is not disturbed when brake housing is removed

F1 Conduit Box location shown. F2 location on left side facing brake housing.

Dimensional Data Sizes 170 through 278

Size		Model	NEMA Frame	Torque		\varnothing В	AJ	AK	$\begin{gathered} \text { Mount } \\ \text { Bolt } \end{gathered}$	D1	E	B1	Z	L	h2	h3	S	P	A	HL Hub Location		$\begin{gathered} \text { S.S. } \\ \text { Location } \end{gathered}$	
		lb -ft		Nm																			
6	170		36X-6	182-256TC	35	47	. 53	7.25	8.50	1/2"-13	10.38	. 185	3.57	3.94	3.8	6.00	16.1	9.54	7.09	6.70	. 19	4.64	1.63
6	170	36X-6	182-256TC	60	80	7.25		8.50	10.38		. 185	9.54						7.09	6.70				
6	170	36X-6	284-286TC	60	80	9.00		10.50	10.76		. 190	10.25						7.81	6.90				
7	196	36X-7	182-256TC	110	149	. 53	7.25	8.50	1/2"-13	11.81	. 185	3.72	4.12	4.3	6.70	16.6	10.25	7.81	6.90	. 19	4.70	1.75	
7	196	36X-7	284-286TC	110	149	. 53	9.00	10.50															
8	230	36X-8	284-286TC	180	240	. 53	9.00	10.50	1/2"-13	13.63	. 190	4.45	4.94	5.2	8.25	17.9	11.19	10.94	8.27	. 19	5.20	2.12	
8	230	36X-8	324TC-405TSC	180	240	. 69	11.00	12.50	5/8"-18														
9	278	36X-9	324TC-405TSC	300	400	. 69	11.00	12.50	5/8"-18	15.68	. 190	5.12	5.60	5.8	9.20	18.8	12.19	11.94	9.69	. 19	5.82	2.12	
9	278	36X-9	444-445TC	300	400	. 69	14.00	16.00		16.56							12.63	12.38					

Note: Dimensions for estimating purposes only.

- Adapter plate - steel (zinc phosphate, prime \& paint)
- Splined hub - steel (zinc plate)
- Housing - ductile iron (primed \& painted):
- Hardware - steel (corrosion resistant plated or stainless)

Select the proper torque rating based on horsepower and rpm (speed at the clutch or brake) using the Torque Selection Chart below. Based on 1.4 service factor.
For other service factors and speeds, use the formulas shown below.

Formula for TABLE 1

$$
\begin{aligned}
& T=\frac{63,025 \times P}{N} \times S F \\
& T=\text { Static torque, lb-in. } \\
& P=\text { Horsepower, hp } \\
& N=\text { Shaft speed at brake, rpm } \\
& S F=\text { Service Factor } \\
& 63,025=\text { Constant }
\end{aligned}
$$

Formula for TABLE 2

$$
\mathrm{T}=\frac{5,252 \times \mathrm{P}}{\mathrm{~N}} \times \mathrm{SF}
$$

$\mathrm{T}=$ Static torque, lb-ft.
P = Horsepower, hp
$\mathrm{N}=$ Shaft speed at brake, rpm
SF = Service Factor
5,252 = Constant

Caution: Do not use Table 1 to select brakes for overhauling or high inertial loads, or where a stop in specified time or distance is required. For these applications the total inertia of the load and power transmission system must be determined to make a brake selection. Refer to sections on torque and thermal ratings and determination.

NOTE: Series 310 and 311 for holding applications only.

TABLE 1
Series 320, 321, 322 Static Torque in Ib-in. (Nm)

Motor hp	rpm									
	600	800	1000	1200	1500	1800	2000	2400	3000	3600
	Static Torque lb-in (Nm)									
1/20	18 (2.03)	7 (.79)	7 (.79)	7 (.79)	3 (.34)	3 (.34)	3 (.34)	3 (.34)	3 (.34)	3 (.34)
1/12	18 (2.03)	18 (2.03)	7 (.79)	7 (.79)	7 (.79)	7 (.79)	7 (.79)	3 (.34)	3 (.34)	3 (.34)
1/8	35 (3.95)	18 (2.03)	18 (2.03)	18 (2.03)	18 (2.03)	7 (.79)	7 (.79)	7 (.79)	7 (.79)	3 (.34)
1/6	35 (3.95)	35 (3.95)	18 (2.03)	18 (2.03)	18 (2.03)	18 (2.03)	18 (2.03)	7 (.79)	7 (.79)	7 (.79)
1/4	-	35 (3.95)	35 (3.95)	35 (3.95)	18 (2.03)	18 (2.03)	18 (2.03)	18 (2.03)	18 (2.03)	7 (.79)
1/3	-	-	35 (3.95)	35 (3.95)	35 (3.95)	18 (2.03)	18 (2.03)	18 (2.03)	18 (2.03)	18 (2.03)
1/2	-	-	-	-	35 (3.95)	35 (3.95)	35 (3.95)	35 (3.95)	18 (2.03)	18 (2.03)
3/4	-	-	-	-	-	-	35 (3.95)	35 (3.95)	35 (3.95)	35 (3.95)
1	-	-	-	-	-	-	-	-	-	35 (3.95)

TABLE 2
Series 333/350/360 Static Torque in lb-ft. (Nm)

Motor hp (kw)	rpm									
	600	800	1000	1200	1500	1800	2000	2400	3000	3600
	Static Torque lb-ft (Nm)									
1/3 (.25)	6 (8)	6 (8)	3 (4)	3 (4)	3 (4)	3 (4)	3 (4)	3 (4)	3 (4)	3 (4)
1/2 (.37)	12 (16)	6 (8)	6 (8)	6 (8)	3 (4)	3 (4)	3 (4)	3 (4)	3 (4)	3 (4)
3/4 (.55)	12 (16)	12 (16)	6 (8)	6 (8)	6 (8)	6 (8)	3 (4)	3 (4)	3 (4)	3 (4)
1 (.75)	25 (34)	12 (16)	12 (16)	12 (16)	6 (8)	6 (8)	6 (8)	6 (8)	6 (8)	3 (4)
1-1/2 (1.1)	25 (34)	25 (34)	12 (16)	12 (16)	12 (16)	12 (16)	6 (8)	6 (8)	6 (8)	6 (8)
2 (1.5)	25 (34)	25 (34)	25 (34)	25 (34)	12 (16)	12 (16)	12 (16)	6 (8)	6 (8)	6 (8)
3 (2.2)	45 (60)	45 (60)	25 (34)	25 (34)	25 (34)	25 (34)	12 (16)	12 (16)	12 (16)	12 (16)
5 (3.7)	60 (80)	60 (80)	45 (60)	45 (60)	25 (34)	25 (34)	25 (34)	25 (34)	25 (34)	12 (16)
7-1/2 (5.6)	110 (150)	110 (150)	60 (80)	60 (60)	45 (60)	45 (60)	45 (60)	25 (34)	25 (34)	25 (34)
10 (7.5)	180 (240)	110 (150)	110 (150)	110 (150)	60 (80)	45 (60)	45 (60)	45 (60)	25 (34)	25 (34)
15 (11.2)	300 (400)	180 (240)	110 (150)	110 (150)	110 (150)	60 (80)	60 (80)	60 (80)	45 (60)	45 (60)
20 (14.9)	300 (400)	180 (240)	180 (240)	180 (240)	110 (150)	110 (150)	110 (150)	60 (80)	60 (80)	60 (80)
25 (18.6)	-	300 (400)	180 (240)	180 (240)	180 (240)	110 (150)	*	*	*	*
30 (22.4)	-	300 (400)	300 (400)	300 (400)	180 (240)	180 (240)	*	*	*	*
40 (29.8)	-	-	300 (400)	300 (400)	300 (400)	180 (240)	*	*	*	*
50 (37.3)	-	-	-	-	300 (400)	300 (400)	*	*	*	*
60 (44.7)	-	-	-	-	300 (400)	300 (400)	*	*	*	*

[^0]Series 360 Continued

Specifications/Unit Pricing (Discount Symbol R5)

Size	NEMA Frame	NominalStatic Torque		Model Number	Thermal Capacity Hp-Sec/Min	Approx weight lbs.	List Price	External Maintained/Deadman Manual Release	Electronic Brake Release Indicator	Space Heater	TerminalStrip	IP-56 Conduit Box	IP-67 Conduit Box
		lb -ft	Nm										
170	182-256TC	35	47	3-61-634H0	14	101	\$3,195.00	\$250.00	\$330.00	\$208.00	\$120.00	\$205.00	\$360.00
170	182-256TC	60	80	3-61-644H0			3,395.00	250.00	330.00	208.00	120.00	205.00	360.00
170	284-286TC	60	80	3-61-644J0			3,595.00	250.00	330.00	208.00	120.00	205.00	360.00
196	182-256TC	75	102	3-61-734H0	20	120	4,266.00	300.00	330.00	208.00	120.00	205.00	360.00
196	182-256TC	110	150	3-61-744H0			4,466.00	300.00	330.00	208.00	120.00	205.00	360.00
196	284-286TC	110	150	3-61-744J0			4,665.00	300.00	330.00	208.00	120.00	205.00	360.00
230	284-286TC	180	240	3-61-844J0	26	176	4,909.00	300.00	330.00	208.00	120.00	205.00	360.00
230	324TC/364-365TC	180	240	3-61-844K0			5,209.00	300.00	330.00	208.00	120.00	205.00	360.00
278	324TC/364-365TC	300	400	3-61-944K0	28	280	6,605.00	300.00	330.00	208.00	120.00	205.00	360.00
278	444TC	300	400	3-61-944L0			6,915.00	300.00	330.00	208.00	120.00	205.00	360.00

Ordering Information

		Numeral
		1
Numeral/ Alpha	Magnet Body Size	Torque lb-ft
6	170	60
7	196	110
8	230	180
9	278	300

Numeral	Enclosure	
4	IP56 Enclosure (standard)	*Specify F1 or F2 location for conduit box modification
E	IP56 conduit box with terminal strip*	
G	IP56 conduit box*	
H	IP67 conduit box* with terminal strip	
M	IP67 conduit box*	

Additional Options	
Standard Brake	0
Space Heater 115	1
Space Heater 230	2
Space Heater 460	3
Brake release indicator Switch NO/NC	4
Brake release indicator NO/NC Space Heater 115	5
Brake release indicator NO/NC Space Heater 230	6
Brake release indicator NO/NC Space Heater 460	7
Wear indicator NO NO	A
Wear indicator NO/NC Space Heater 115	B
Wear indicator NO/NC Space Heater 230	C
Wear indicator NO/NC Space Heater 460	D

Mounting/Size	
NEMA 180/210/250 C-face	H
NEMA 280 C-face	J
NEMA 320/400 C-face	K
NEMA 440 C-face Mt	L
NEMA 500 C-face Mt^{*}	M
IEC 132 C -face Mt^{*}	S
IEC 160 C -face Mt^{*}	T
IEC 132 D -face Mt^{*}	U
IEC 160 D -face Mt^{*}	V
IEC 180 D -face Mt^{*}	W
IEC 200 D -face Mt^{*}	X
IEC 225 D -face Mt^{*}	Y

*Contact factory for pricing on these mounting options

Table 3 - Additional Options

No Manual Release	A
Maintained Release	R
External Non-Maintained (deadman) and Maintained Manual Release	S

NOTE: Final part number may change due to specifications or options selected or other product design considerations. A number such as a 2, 3, 4 etc., in the $12^{\text {th }}$ position is used to designate a unique brake (custom) and can only be assigned by Stearns Design Engineering Department.

Modifications are available - see AAB Modification Section.
Table 2 - Coil Voltage

Character to Insert	Coil Voltage	Current Rating			
		$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	
E	24 Vdc	2.80	4.27	3.85	3.85
J	90 Vdc	.70	1.05	1.19	1.19
K	103 Vdc	.80	.96	1.08	1.08
L	180 Vdc	.36	.54	.61	.61
M	205 Vdc	.41	.49	.56	.56
S	258 Vdc	.33	.34	.40	.44
B	$414 / 432$ Vdc	.22	.26	.28	.28

Other voltages available - consult factory
For AC rectifiers see pages 86-89

[^1]Table 1 - Hub Bores
NOTE: See page 97 for recommended minimum bore sizes by torque

Character to insert	Bore	Keyway Size*		Bores Available Unit Size			
		Width (in.)	Depth (in.)				
				170	196	230	278
OE	1.125	1/4	1/8	X			
OF	1.250	1/4	1/8	X			
OG	1.375	5/16	5/32	X	X		
OM	1.500	3/8	3/16	X	X		
OH	1.625	3/8	3/16	X	X	X	
01	1.750	3/8	3/16		X	X	
0 J	1.875	1/2	1/4		X	X	X
OL	2.000	1/2	1/4			X	X
ON	2.125	1/2	1/4				X
OR	2.375	5/8	5/16				X
Metric	Bore	Width	Depth	170	196	230	278
30	30	8	3.3	X	X		
35	35	10	3.3	X	X	X	
38	38	10	3.3	X	X	X	
40	40	12	3.3	X	X	X	X
42	42	12	3.3		X	X	
45	45	14	3.8		X	X	X
48	48	14	3.8		X	X	X
50	50	14	3.8			X	X
55	55	16	4.3				X
60	60	18	4.4				X

Installation, Service and Parts List for 36X Series Armature Actuated Brakes

Important

Please read these instructions carefully before installing, operating, or servicing your Stearns brake. Failure to comply with these instructions could cause injury to personnel and/or damage to property if the brake is installed or operated incorrectly. For definition of limited warranty/liability, contact Rexnord Industries, LLC, Stearns Division, 5150 S. International Dr., Cudahy, Wisconsin 53110, (414) 272-1100.

OEM's and subsystem suppliers, please forward these instructions with your components to the final user.

Caution

1. Servicing shall be in compliance with applicable local safety codes including Occupational Safety and Health Act (OSHA). All wiring and electrical connections must comply with the National Electric Code (NEC) and local electric codes in effect.
2. To prevent an electrical hazard, disconnect power source before working on the brake. If power disconnect point is out of sight, lock disconnect in the off position and tag to prevent accidental application of power to system.
3. To avoid damage to internal power supply, hipot testing should not exceed 1500 volts for one second. Brake coil leads must be connected together.
4. Heat developed during normal operation $\left(135^{\circ} \mathrm{C}\right)$ of the brake may be hot enough to be painful or cause injury. Be careful when touching exterior surfaces. Allow sufficient time for the brake to cool before servicing.
5. After usage, the brake will contain burnt and degraded friction material dust. This dust should be removed before servicing or adjusting the brake.

DO NOT blow off dust using an air hose. It is important to avoid dispersing dust into the air or inhaling it, as this may be dangerous to your health.
a) Wear a filtered mask or a respirator while removing dust.
b) Use a vacuum cleaner or a soft brush to remove dust from the brake. When brushing, avoid causing the dust to become airborne. Collect the dust in a container, such as a bag, which can be sealed off.
6. Maximum continuous operating ambient temperature for these brakes should not exceed $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$.

I. Installation

Note 1: Position of hub should allow full engagement of friction disc without interfering with the movement of the armature. Motor shaft end float should not exceed .020 ". Shaft runout should be within .002" TIR. Motor mounting surface should be flat and perpendicular to within .004 " of motor shaft.
Note 2: Keep grease and oil from contacting friction surfaces.
Note 3: Hub should be a tight sliding fit. For shrink fit hub, consult factory.

I. Installation

Step 1

1. Position hub and key on motor shaft (set screw end toward motor).
2. Locate hub $1 / 8^{\prime \prime}\left(\pm 1 / 16^{\prime \prime}\right)$ outward from the register face.
3. Tighten set screws per Table A.

Table A

Brake Model	Bolt Circle	Bolt Torque		Hex
	English	Wrench		

flush to
register.

Step 2

1. Remove the three access plugs using a 22 mm wrench.
2. Remove the three housing bolts using a 6 mm hex wrench, and lift the housing from the brake.
3. Remove the three pressure plate bolts* and remove the pressure plate and carrier disc.
4. Remove the three magbody mounting bolts*

Step 3

1. Position adapter plate on motor register.
2. Bolt adapter plate to motor register with four mounting bolts. (Not provided) (1/2-13 x 1.25 " for 7.25 and 9.00 " BC and $5 / 8-11 \times 1.25$ " for $11.00^{\prime \prime} \mathrm{BC}$. and $14.00^{\prime \prime} \mathrm{BC}$.) Tighten to manufacturers specification using $3 / 8^{\prime \prime}$ hex wrench for $7.25^{\prime \prime}$ and 9.00 BC mounting. Use $1 / 2^{\prime \prime}$ hex wrench for 11.00 " BC and 14.00 " BC. mounting.
Note: Verify that the O-ring gasket is in place on the motor side of the

Installation continued

Step 4

1. Position armature/magbody assembly over hub and on to the adapter.
2. Tighten socket head cap screws per Table B.

Table B

Brake Model	$\begin{gathered} \text { Bolt } \\ \text { Circle } \end{gathered}$	Bolt Torque		
		Metric	English	
36X-6	170	38 Nm	$28 \mathrm{lb}-\mathrm{ft}$	6 mm
36X-7	196	38 Nm	$28 \mathrm{lb}-\mathrm{ft}$	6 mm
36X-8	230	68Nm	$50 \mathrm{lb}-\mathrm{ft}$	8 mm
36X-9	278	68 Nm	$50 \mathrm{lb}-\mathrm{ft}$	8 mm

Note: Apply dry moly lube, or anti-seize compound on bolt threads.

Step 5

1. Slide carrier disc onto the splined hub, with flat side of disc outward from motor.
2. Position pressure plate over carrier disc.
3. Tighten socket head cap screws per Table C.

Note 1: Apply dry moly lube, or anti-seize compound on bolt threads.
Note 2: Verify air-gap as shown in Table D.
cw x 3

Table C

Brake Model	$\begin{gathered} \text { Bolt } \\ \text { Circle } \end{gathered}$	Bolt Torque		
		Metric	English	
36X-6	170	19Nm	$14 \mathrm{lb}-\mathrm{ft}$	6 mm
36X-7	196	38 Nm	28 lb -ft	6 mm
36X-8	230	68 Nm	$50 \mathrm{lb}-\mathrm{ft}$	8 mm
36X-9	278	68 Nm	50 lb -ft	8 mm

Note: Apply dry moly lube, or anti-seize compound on bolt threads.

Step 6 Leadwire Connection Optional Conduit Box

1. Loosen NPT plug and four (4) cover plate screws from junction box and remove.
2. Route leadwires into junction box and connect conduit to box.
3. Connect wiring as shown for either the IP 56 or IP 65 conduit box assembly.
4. Replace junction box cover and tighten screws to seal.

5-08-0050-00
 IP 56 Assembly

5-08-0051-00 IP 65 Assembly

CAUTION: Be sure all internal wiring is clear of housing flange before replacing housing.

Installation continued

Step 7

1. Slide housing over brake, align the manual release handle with the lifting lug position on the adapter plate. Verify that the O-ring gasket is in position in the housing.
2. Insert the three housing bolts and tighten to $11 \mathrm{lb}-\mathrm{ft}$ with a 6 mm hex wrench.
3. Ensure that gasket is securely located on the face of the access plug. Add a drop of Loctite 242, or equivalent, to the thread of each plug and tighten to $28 \mathrm{lb}-\mathrm{ft}$ using a 22 mm wrench.
4. Thread release handle into place and tighten jam nut with a 30 mm wrench. Insert and tighten the stabilizing bolt against the housing, and tighten the jam nut using a 13 mm wrench.

IIA Manual Release Operation (Deadman)

II Manual Release Engagement (Maintained)

1. Remove two manual release access plugs using a 22 mm wrench.
2. Insert 6 mm hex wrench through housing and pressure plate. Rotate release bolts cw 180° at a time, alternating sides each half turn, until armature is tight against magnet body. (You will feel bolts tighten).

II Manual Release Disengagement (Maintained)

1. Insert 6 mm hex wrench through housing and pressure plate.

Rotate release bolts ccw 180° at a time, alternating sides each half turn, until bolt head is tight against pressure plate. (You will feel bolts tighten). Then turn bolts cw 180°.
2. Ensure that gasket is securely located on the face of the access plug. Add a drop of Loctite 242, or equivalent, to the thread of each plug and tighten to $28 \mathrm{lb}-\mathrm{ft}$ using a 22 mm wrench.

IV. Air Gap Setting and Wear Adjust

	air gap	Air gap is factory set per Table D. Set air gap is measured at the adjusting bolts, between the armature and magbody. Table D - Minimum Air Gap			
		Brake Model	Bolt Circle	Air Gap without Brake Release	Air Gap with Brake Release Indicator Switch
		36X-6	170	. 406 - 508 mm	. 508 - 610 mm
		36X-7	196	.016-.020"	.020-.024"
		36X-8	230	. 457 -.559mm	. 508 - 610 mm
		36X-9	278	.018-022"	.020-.024"

Normal friction disc wear will cause air gap to increase from original setting (Table D). Air gap should be readjusted when gap reaches dimension shown in Table E.

Table E - Maximum Air Gap

Brake Model	Hex Wrench	Max Gap	
		Metric	English
$36 \mathrm{X}-6$	$3 / 4^{\prime \prime}$	$.89 m m$	$.039^{\prime \prime}$
$36 \mathrm{X}-7$	$3 / 4^{\prime \prime}$	$.89 m m$	$.035^{\prime \prime}$
$36 \mathrm{X}-8$	$3 / 4^{\prime \prime}$	$1.09 m m$	$.043^{\prime \prime}$
$36 \mathrm{X}-9$	$3 / 4^{\prime \prime}$	$1.40 m m$	$.055^{\prime \prime}$

Table F - Disc Maximum Wear

Brake Model	Min. Thickness	
	Metric	English
$36 \mathrm{X}-6$	$8.74 m m$	$0.344^{\prime \prime}$
$36 \mathrm{X}-7$	9.27 mm	$0.365^{\prime \prime}$
$36 \mathrm{X}-8$	11.68 mm	$0.460^{\prime \prime}$
$36 \mathrm{X}-9$	12.57 mm	$0.495^{\prime \prime}$

Wear Adjustment

1. Loosen six mounting bolts $1 / 2$ turn.
2. Rotate three adjusting screws cw to achieve original gap (Table D). Also see Note: 1.
3. Retighten mounting bolts (Table B).
4. Recheck gap. Repeat procedure as necessary

Note 1: $90^{\circ} \mathrm{cw}$ rotation is approximately $0.010 \mathrm{~mm}\left(.25 \mathrm{~mm}^{\prime \prime}\right)$ for the 36X-6 size brake, and 0.15 " (0.38 mm) for the $36 \mathrm{X}-7,36 \mathrm{X}-8$ and 36X-9 size brake.

Note 2: Brake discs should be replaced when they reach the thickness shown in Table F. Normally this will occur after 4-5 adjustments.

V. Coil Wiring

Caution: Brake wiring should only be carried out by qualified personnel.
Stearns brake coils are wound for DC voltage input at $\pm 10 \%$ of nameplate rating. Coil resistances shown below are for references purposes. For applications where AC voltage is being rectified refer to AC control switching shown under Electrical Conditions.

Table G
Table G

Bolt Circle	170	230	278	278	
Brake Model	36×-6	36×-7	36×-8	36×-9	
Voltage Rating \downarrow	Ohm (nominal value)*				
24	8.56	7.28	5.62	5.11	
90	129.3	110.3	85.4	77.9	
103	129.3	138.2	107	97.7	
180	499.7	426.8	330.7	302.6	
205	499.7	534.6	414.3	379.3	
258	783	669	650	605	
$414 / 432$	1922	1726	1649	1484	

-Coil voltage rating shown on nameplate Supply voltage must be within 10% of nameplate rating.

* Resistance values at $20^{\circ} \mathrm{C}$

Figure 2

* A suppression device is required when switching on the DC side of the line and using the half wave rectifier (412-0591-01K).

Table I

Item	Torque Rating Description		36X-6	36X-7	36X-8	36X-9
1	Mag body \& coil assembly (see table J for voltage)		5-04-0977-00-0[]K	5-04-0987-00-0[]K	5-04-0992-00-0[]K	5-04-0997-00-0[]K
3	Armature \& Pressure Plate Kit		8-405-977-0K	8-405-987-0K	8-405-992-0K	8-405-997-0K
4	Carrier disc kit		5-14-0976-0K	5-14-0985-0K	5-14-0990-0K	5-14-0995-0K
5	Housing kit		8-007-130-0K	8-007-131-0K	8-007-132-0K	8-007-133-0K
6a	Adapter plate kit-Aluminum 7.25" B.C.		8-001-909-1K	8-001-910-1K		
	-Steel 7.25" B.C.		8-001-911-1K	8-001-920-1K		
6b	Adapter plate kit-Aluminum 9" B.C.		8-001-909-4K	8-001-910-2K	8-001-912-1K	
	-Steel 9" B.C.		8-001-911-4K	8-001-920-2K	8-001-913-1K	
6c	Adapter plate kit-Aluminum 11" B.C.				8-001-912-2K	8-001-914-1K
	-Steel 11" B.C.				8-001-913-2K	8-001-915-1K
6d	Adapter plate kit-Aluminum 14" B.C.					8-001-914-4K
	-Steel 14" B.C.					8-001-915-4K
7	Adjust bolt kit		8-434-975-0K	8-439-985-0K	8-434-990-0K	8-434-990-0K
8	Sprink kit	Outer pole	9-70-0965-0K	9-70-0985-0K	9-70-0990-0K	9-70-0995-0K
		Inner pole	9-70-0975-0K ${ }^{(1)}$	*	*	*
9	Hub (see table K)	English bore	5-16-0972-01-01[]	5-16-0982-01-01[]	5-16-0992-01-01[]	5-16-0997-01-01[]
		Metric bore	8-016-972-00-M[]	8-016-982-00-M[]	8-016-992-00M[]	8-016-997-00M[]
10	Deadman/maintained release kit		8-419-977-0K	8-419-987-0K	8-419-992-0K	8-419-997-0K

* Inner and outer pole springs are in same kit
${ }^{(1)}$ Size 170 brakes w/derated torque do not require inner pole spring kit

Table J Coil Voltage \& Current Ratings

Magbody \& Coil Assembly Voltage Identifier -0[]K	Current Rating				
Voltage	Insert	$\mathbf{1 7 0}$	$\mathbf{1 9 6}$	$\mathbf{2 3 0}$	$\mathbf{2 7 8}$
24 Vdc	$0[\mathrm{E}] \mathrm{K}$	2.80	3.30	4.27	3.85
90 Vdc	$0[\mathrm{~J}] \mathrm{K}$.70	.82	1.05	1.19
103 Vdc	$0[\mathrm{~K}] \mathrm{K}$.80	.75	.96	1.08
180 Vdc	$0[\mathrm{~L}] \mathrm{K}$.36	.42	.54	.61
205 Vdc	$0[\mathrm{M}] \mathrm{K}$.41	.38	.49	.56
258 Vdc	$0[\mathrm{~S}] \mathrm{K}$.33	.38	.40	.44
$414 / 432 \mathrm{Vdc}$	$0[\mathrm{~B}] \mathrm{K}$.22	.25	.26	.29

Table K

Bore Diameters			
English Bore	Insert []	Metric Bore	Insert []
$11 / 8$	E	30 mm	30
$11 / 4$	F	35 mm	35
$13 / 8$	G	38 mm	38
$11 / 2$	M	40 mm	40
$15 / 8$	H	$42 m \mathrm{~m}$	42
$13 / 4$	I	$45 m \mathrm{~m}$	45
$17 / 8$	J	$48 m \mathrm{~m}$	48
2	W	50 mm	50
$21 / 8$	N	$55 m \mathrm{~m}$	55
$21 / 4$	P	60 mm	60
$23 / 8$	R	70 mm	70

Kit Contents

Item	Description
1	Mag body \& coil assembly Mounting bolts (3) \& lockwasher (3)
3	Armature \& pressure plate Mounting bolts (3) \& lockwasher (3)
5	Housing Mounting bolts (3) \& lockwasher (3) (8) access plugs Housing flange O-ring
6	Adapter plate Adapter-to-mounting face O-ring
8	Outer and inner pole springs Torque adjust plugs
10	Manual release bow Manual release handle Stabilizing bolt \& locknut Release pivot (2) \& O-rings (2) Release bolts (2) \& washers (2) Maintained release bolts, washers \& springs

5151 S. International Dr.

Installation and Service Instructions for Stearns AAB Rectifier

Important

Please read these instructions carefully before installing, operating, or servicing your Stearns brake and rectifier. Failure to comply with these instructions could cause injury to personnel and/or damage to property if the brake is installed or operated incorrectly. For definition of limited warranty/liability, contact Rexnord Industries, Inc., Stearns Division, 5150 S. International Dr., Cudahy, Wisconsin 53110,(414) 272-1100.

OEM's and subsystem suppliers, please forward these instructions with your components to the final user.

Caution

1. Servicing shall be in compliance with applicable local safety codes including Occupational Safety and Health Act (OSHA). All wiring and electrical connections must comply with the National Electric Code (NEC) and local electric codes in effect.
2. To prevent an electrical hazard, disconnect power source before working on the brake. If power disconnect point is out of sight, lock disconnect in the off position and tag to prevent accidental application of power to system.
3. Maximum operating ambient temperature for these rectifiers should not exceed $65^{\circ} \mathrm{C}\left(150^{\circ} \mathrm{F}\right)$.
4. Refer to specific brake Installation and Service Instructions for proper mounting of brake.

Wiring

1. Connect coil leadwires to rectifier as shown in diagrams. (Polarity does not matter.)
2. Connect rectifier leadwires to AC power source.

Note 1: For each nominal AC line voltage, use table to determine the proper DC coil rating requirement.
Note 2: Rectifiers must be fused with a 1 amp ; fast acting fuse, with a rating at, or above the line voltage input to the rectifier. The exception to fusing are kits \#412-0292-01 and 412-0292-03, which have built in fuses.
Table

Line Voltage (AC)	Rectifier Type	Recommended Coil Voltage Rating	Stearns Rectifier Part Number	Rectifier Output Voltage
100	full	90	$412-029^{*}-01 \mathrm{~K}$	90
110	full	103	$412-029^{*}-01 \mathrm{~K}$	99
115	full	103	$412-029^{*}-01 \mathrm{~K}$	103
127	full	103	$412-029^{*}-01 \mathrm{~K}$	115
208	full	180	$412-029^{*}-01 \mathrm{~K}$	187
220	full	205	$412-029^{*}-01 \mathrm{~K}$	198
230	full	205	$412-029^{*}-01 \mathrm{~K}$	207
240	full	205	$412-029^{*}-01 \mathrm{~K}$	216
230	full	205	$412-0292-03 \mathrm{~K}$	207
220	half	103	$412-0591-01 \mathrm{~K}$	99
230	half	103	$412-0591-0^{*} \mathrm{~K}$	103
240	half	103	$412-0591-0^{*} \mathrm{~K}$	108
$380 / 400$	half	180	$412-0591-0^{*} \mathrm{~K}$	$171 / 180$
415	half	180	$412-0591-0^{*} \mathrm{~K}$	187
460	half	205	$412-0591-0^{*} \mathrm{~K}$	207
460	half	205	$412-0493-0^{*} \mathrm{~K}$	207
575	half	260	$412-0591-0^{*} \mathrm{~K}$	259
480	half	205	$412-0591-0^{*} \mathrm{~K}$	216

Note: *Insert numeral from existing rectifier in this position. Full Wave rectifier output is 90% of AC line input. Half wave rectifier output is 45% of AC line input.

Kit Number 412-0591-01K**

** A suppression device is required when switching on the DC side of the line and using the half wave rectifier (412-0591-01K).

Kit Number 412-0291-01K

Full Wave Rectifier

Kit Number 412-0292-01K

Full Wave Rectifier
Kit Number 412-0591-03K**

Half Wave Rectifier

Installation and Service Instructions for Stearns Quick-Set \& Over-Excitation Rectifiers

Important

Please read these instructions carefully before installing, operating, or servicing your Stearns brake and rectifier. Failure to comply with these instructions could cause injury to personnel and/or damage to property if the brake is installed or operated incorrectly. For definition of limited warranty/liability, contact Rexnord Industries, Inc., Stearns Division, 5150 S. International Dr., Cudahy, Wisconsin 53110,(414) 272-1100.

OEM's and subsystem suppliers, please forward these instructions with your components to the final user.

Caution

1. Servicing shall be in compliance with applicable local safety codes including Occupational Safety and Health Act (OSHA). All wiring and electrical connections must comply with the National Electric Code (NEC) and local electric codes in effect.
2. To prevent an electrical hazard, disconnect power source before working on the brake. If power disconnect point is out of sight, lock disconnect in the off position and tag to prevent accidental application of power to system.
3. Maximum operating ambient temperature for these rectifiers should not exceed $65^{\circ} \mathrm{C}\left(150^{\circ} \mathrm{F}\right)$.
4. Refer to specific brake Installation and Service Instructions for proper mounting of brake.
5. When use of these rectifiers is in conjunction with a motor operated by a variably frequency drive, the input wiring to the rectifier should be run in a wireway that does not contain the motor wires. Shielded cable should be used in applications where the rectifier and motor wires must be run together.

Wiring

1. Connect coil leadwires to rectifier as shown in diagrams.
(Polarity does not matter.)
2. Connect rectifier leadwires to AC power source.

Note: For each nominal AC line voltage, use table to determine the proper DC coil rating requirement.

Table A

Line Voltage (AC)	Rectifier Type	Recommended Coil Voltage Rating	Stearns Rectifier Part Number	Rectifier Output Voltage
230	full	205	$412-0296-01 \mathrm{~K}$	207
460	full	415	$412-0498-01 \mathrm{~K}$	414
230	half	103	$412-0293-01 \mathrm{~K}$	$207 / 103^{*}$
460	half	205	$412-0496-01 \mathrm{~K}$	$414 / 207^{*}$
575	half	260	$412-0598-11 \mathrm{~K}$	259
460	half	205	$412-0498-11 \mathrm{~K}$	207

[^2]

Over-Excitation Rectifier
Fuse is: 3 A 250 V for 230 VAC line 3A 600V for 460 VAC line

Series 333/350/360

Modification	Series	Brake Size	List Price Adder
Maintained Manual Release			
	333	ALL	size 72 $\$ 43.00$ size 90 $\$ 50.00$ size 112 $\$ 55.00$ size 132 $\$ 63.00$ size 145 $\$ 70.00$ size 170 $\$ 80.00$ size 196 $\$ 150.00$ size 230 $\$ 184.00$ size 278 $\$ 275.00$
	350/360	ALL	Standard feature
Non-Maintained Manual Release			
333	333	ALL	size 72 $\$ 43.00$ size 90 size 112 $\$ 50.00$ size 132 $\$ 55.00$ size 145 $\$ 70.00$ size 170 $\$ 80.00$ size 196 $\$ 150.00$ size 230 $\$ 184.00$ size 278 $\$ 275.00$
0	360	ALL	$\begin{gathered} \text { size } 170 \$ 250.00 \\ \text { size } 196-278 \$ 300.00 \end{gathered}$
Electronic Brake Release Indicator Switch			
	333/350/360	ALL	\$330.00
Electronic Wear Indicator Switch	333/350/360	ALL	\$330.00
AC Rectifiers, In-Line	333	size 72-90 115 Vac size 72-112 230 Vac	$\$ 46.00$ standard in-line $\$ 70.00$ in-line quickset
AC Rectifiers, Separate	333/350/360	ALL	see rectifier pages
Conduit Box			
	333/350/360	ALL	\$205.00
	350/360 with IP67 conduit box	ALL	\$360.00

Modification	Series	Brake Size	List Price
Band Seal (Boot)			
	333	ALL	size 72 $\$ 11.00$ size 90 $\$ 12.00$ size 112 $\$ 14.00$ size 132 $\$ 20.00$ size 145 $\$ 34.00$ size 170 $\$ 50.00$ size 196 $\$ 63.00$ size 230 $\$ 75.00$ size 278 $\$ 90.00$
End Cap Plug			
	333	ALL	size $72 \$ 10.00$ size $90 \$ 15.00$ size $112 \$ 20.00$ size $132 \$ 25.00$ size $145 \$ 45.00$ size $170 \$ 45.00$ size 196 \$50.00 size $230 \$ 60.00$ size $278 \$ 75.00$
Space Heater			
	333/350/360	ALL	Sizes 72-112 \$116.00 Sizes 132-278 \$208.00
Tach Machining			
	333 tapped holes in magnet body for tether mount	ALL	\$25.00
	350/360 Machining on brake housing	ALL	$\begin{gathered} \text { Size } 170 \$ 814.00 \\ \text { Sizes } 196-278 \$ 1,020.00 \end{gathered}$
Through-Shaft			
	333 through-shaft seal in magnet body	ALL	Sizes 72-170 \$176.00 Sizes 196-278 \$376.00
	350/360 through-shaft hole in housing with shaft seal	ALL	\$376.00

Product Overview

NOTE: For brake response times with and without AC rectifiers see page 94.

Maximum operating voltage is $+10 \%$ of nominal, frequency $50 / 60 \mathrm{~Hz}$, maximum ambient temperature range of $-40^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$

Combination Full and Half Wave

Provides option of utilizing either full or half wave rectification Maximum operating voltage is $+10 \%$ of nominal, frequency $50 / 60 \mathrm{~Hz}$. Maximum ambient temperature range is $-40^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$

TOR-AC Full and Half Wave

Provides coil turn off nearly as fast as DC side switching. Includes line filter for AC drive applications or whenever electrical filtering is required to protect the rectifier from high-frequency electrical line pulses. Must be switched on/off by a switch in an AC lead of the TOR-AC. Maximum operating voltage $+10 \%$ of nominal, frequency $50 / 60 \mathrm{~Hz}$.
Maximum ambient temperature range is $-40^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$

QuickSet

A rectifier that provides a quick brake response time even when the rectifier is permanently wired across the windings of an AC motor. The QuickSet Rectifier detects the decaying, motor generated voltage that occurs when power is removed from the motor circuit, and interrupts brake coil current in response. QuickSet Rectifiers can be specified full wave or half wave.
Operating voltage is $\pm 10 \%$ of nominal, frequency $50 / 60 \mathrm{~Hz}$.
Maximum ambient temperature range is $-40^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
QuickSet/QuickRelease A rectifier that provides a timed, full wave rectified "over-excitation" brake release function, followed by continuous, half wave rectified brake released "holding" function, when used in conjunction with an appropriate brake coil voltage rating.
USED AS WATTSAVER: Provides a timed, full wave rectified brake release function, followed by continuous, half wave rectified brake released "wattsaver" function, when used in conjunction with an appropriate brake coil voltage rating. The Wattsaver serves to reduce the electrical power consumption and dissipation of the brake in the released state. Operating voltage is $\pm 10 \%$ of nominal, frequency $50 / 60 \mathrm{~Hz}$. Maximum ambient temperature varies by part number - see information by part number on following pages.

Output

Bi-Phase Rectifiers

A rectifier that is typically used in single phase, reversing, permanent split capacitor (PSC) motor applications. A single phase, reversing, PSC motor typically has two windings of equivalent resistance. The winding which serves as the main winding is connected directly across the power line, the winding which serves as the auxiliary winding is connected in series with a run capacitor across the power line. The direction of rotation is reversed by interchanging the function of the two windings. The Bi-Phase Rectifier provides the same voltage to the brake coil regardless of the direction of rotation of the motor. The Bi-Phase Rectifier has five leads and comes in standard response and QuickSet versions. Bi-Phase Rectifiers are application specific. Please contact factory for more information.

Discount Symbol R3

115 Vac Input Voltage	Full Wave										
	Brake Sizes	Part Number	AC Input $50 / 60 \mathrm{~Hz}$	DC Output	Brake Coil Voltage/Letter Designation		Switching		Connection	Max Current (amps)	List Price
	72-196	412029101K	115	103	K or J		ac or dc side or connect across motor terminals		ac leads dc terminal block	. 8	\$46.00
	ALL	412029201K	115	103	K or J		ac or dc side or connect across motor terminals		ac terminal block dc terminal block	1.6	\$70.00
	ALL	412029203K	115	103	K or J		ac or dc side or connect across motor terminals		ac leads dc leads	1.6	\$70.00
	Combination Full and Half Wave										
	Brake Sizes	Part Number	AC Input	DC Output	Brake Coil Voltage/ Letter Designation			Switching	Connection	Max Current (amps)	List Price
	*	412049101K	$\begin{aligned} & 115 / 230 \\ & 460 / 575 \end{aligned}$	$\begin{gathered} \hline 50 / 103 \\ 207 / 259 \\ 414 / 517 \end{gathered}$	$\begin{aligned} & 50 \mathrm{Vdc}=\mathrm{G} \\ & 207 \mathrm{Vdc}=\mathrm{M} \\ & 414 \mathrm{Vdc}=\mathrm{B} \end{aligned}$	$\begin{gathered} 103 \mathrm{Vdc}=\mathrm{K}^{*} \\ 259 \mathrm{Vdc}=\mathrm{S} \\ 517 \mathrm{Vdc}=\mathrm{A} \end{gathered}$		ac or dc side or connect across motor terminals	ac terminal block dc terminal block	. 8	\$90.00

*At 50 Vdc coil voltage, this rectifier can be used on brake sizes 72-112. At 103 Vdc coil voltage, this rectifier can be used on brake sizes 72-196. At all other listed coil voltages, this rectifier can be used on any brake size.

230 Vac Input Voltage Brake Sizes

Discount Symbol R3

Rectifier Dimensions

Tape Mount

Part Number	Length	Width	Ht	Connection	
				AC	DC
4-1-20291-01K	1.4	0.6	1.0	Leadwire, 7" long	Terminal
4-1-20292-01K	1.38	1.06	0.94	Terminal	Terminal
4-1-20292-03K	1.38	1.06	0.9	Leadwire, 2.5" long	Leadwire, 2.5" long
4-1-20491-01K	2.25	1.25	1.0	Terminal	Terminal
4-1-20591-03K	1.4	0.75	0.9	Leadwire, 7" long	Leadwire, 7" long
4-1-20591-01K	1.4	0.75	1.0	Leadwire, 7" long	Terminal

Terminal location or connection may differ from sketch
Flange or Tape Mount

Part Number	A	B	C	D	E	F
$4-1-20293-01 \mathrm{~K}$	4.6	5	5.5	3.3	2.03	1.25
$4-1-20294-01 \mathrm{~K}$	3	3.5	4	2	2	1.5
$4-1-20296-01 \mathrm{~K}$	3	3.5	4	3	2	1.5
$4-1-20493-01 \mathrm{~K}$	2	2.5	3	1.5	1.6	1
$4-1-20494-04 \mathrm{~K}$	3	3.5	4	2	2	1.5
$4-1-20494-11 \mathrm{~K}$	3	3.5	4	2	2	1.5
$4-1-20494-13 \mathrm{~K}$	3	3.5	4	2	2	1.5
$4-1-20496-01 \mathrm{~K}$	4.6	5	5.5	3.3	2	1.25
$4-1-20498-01 \mathrm{~K}$	3	3.5	4	3	2	1.5
$4-1-20498-11 \mathrm{~K}$	2	2.38	2.6	2	2.1	1.3
$4-1-20594-11 \mathrm{~K}$	3	3.5	4	2	2	1.5
$4-1-20598-11 \mathrm{~K}$	2	2.38	2.6	2	2.1	1.3

Part Number	A	B	C	D	E	F	Mount
$4-1-20494-01 \mathrm{~K}$	2.3			1.32	6	0.86	Tape
$4-1-20294-02 \mathrm{~K}$	3	3.5	4	2	6	1.5	Flange
$4-1-20494-05 \mathrm{~K}$	3	3.5	4	2	6	1.5	Flange
$4-1-20494-12 \mathrm{~K}$	3	3.5	4	2	6	1.5	Flange
$4-1-20494-14 \mathrm{~K}$	3	3.5	4	2	6	1.5	Flange
$4-1-20594-12 \mathrm{~K}$	3	3.5	4	2	6	1.5	Flange

Wiring Diagrams/Switching NOTE: For brake response times with and without AC rectifiers see page 94

Electronic Brake Release Indicator (Proving Switch) Armature-Actuated Brake Series

Indicates when the brake is released by sensing the change in the brake coil current waveform. For use with the Series $333 / 350 / 360$ brakes

Brake Operation

When electrical power is applied to the armature-actuated brake coil, the armature is attracted by the electromagnetic force generated by the magnet body, which overcomes spring action. This allows the friction disc to rotate freely. When electrical power is interrupted, the electromagnetic force is removed and the pressure spring mechanically forces the armature plate to clamp the friction disc between itself and the pressure plate. This develops torque to stop or hold the load.

Switch Operation

When the brake armature is pulled in to the magnet body to release the brake, a change in the brake coil current waveform occurs. By tracking this change in the brake coil current, the electronic switch indicates when the brake is released.

Ordering Information

List Price	Discount Symbol
$\$ 330.00$	R3

Part Number Example: 4-4-07090-XX

DC Voltage *	Characters To Insert
24	024
90	090
103	103
180	180
205	205
258	258
414	414

Specify brake model number. The last 2 digits of the switch part number will depend upon the brake size

[^3]
Features

- Mount in remote location (control cabinet)
- Operating temperature $-40^{\circ} \mathrm{C}$ through $65^{\circ} \mathrm{C}$
- Not susceptible to common problems of mechanical switches, such as mechanical fatigue, tolerances, and vibration.
- Relay contacts are silver-cadmium oxide
- Utilize either normally-open contacts (UL rated 2-20A, inductive or resistive, at 12-240 VAC and CSA rated 10A, inductive or resistive at 240 VAC) or normally-closed contacts (UL rated 2-10A, inductive or resistive, at 12-240 VAC and CSA rated 10A, inductive or resistive, at 240 VAC)

Wiring Instructions: See sheet P/N 8-178-000-03

Dimensions

414V Unit

24 V thru 240 V Units

*Standard voltages listed. For other voltages, contact factory.

NOTE: Cannot be used with half-wave rectifier. Use with full-wave or TOR-AC full-wave rectifier only.

Electronic Brake Release Indicator (Proving Switch) Armature-Actuated Brake Series

Indicates when the brake is released by sensing the change in the brake coil current waveform.
For use with the Series 333/350/360 brakes

Features

- Mount in remote location (control cabinet)
- Operating temperature $-40^{\circ} \mathrm{C}$ through $65^{\circ} \mathrm{C}$
- Not susceptible to common problems of mechanical switches, such as mechanical fatigue, tolerances, and vibration.
- Relay contacts are silver-cadmium oxide
- Utilize either normally-open contacts (UL rated 2-20A, inductive or resistive, at 12-240 VAC and CSA rated 10A, inductive or resistive at 240 VAC) or normally-closed contacts (UL rated 2-10A, inductive or resistive, at 12-240 VAC and CSA rated 10A, inductive or resistive, at 240 VAC)

Brake Operation

When electrical power is applied to the armature-actuated brake coil, the armature is attracted by the electromagnetic force generated by the magnet body, which overcomes spring action. This allows the friction disc to rotate freely. When electrical power is interrupted, the electromagnetic force is removed and the pressure spring mechanically forces the armature plate to clamp the friction disc between itself and the pressure plate. This develops torque to stop or hold the load.
Switch Operation
When the brake armature is pulled in to the magnet body to release the brake, a change in the brake coil current waveform occurs. By tracking this change in the brake coil current, the electronic switch indicates when the brake is released.

Ordering Information

List Price	Discount Symbol
$\$ 330.00$	R 3

Part Number Example: 4-4-07090-XX

DC	
Voltage* *	Characters
To Insert	

Specify brake model number. The last 2 digits of the switch part number will depend upon the brake size

Dimensions

414V Unit

24V thru 240V Units

[^4]NOTE: Cannot be used with half-wave rectifier. Use with full-wave or TOR-AC full-wave rectifier only.

Wiring Instructions

IMPORTANT: Please read these instructions carefully before installing, operating or servicing your Stearns switch. Failure to comply with these instructions could cause injury to personnel and/or damage to property if the switch is installed or operated incorrectly. For definition of limited warranty/liability, contact Rexnord Insustries, Inc., Stearns Division, 5150 S International Drive, Cudahy, Wisconsin 53110, (414) 272-1100.

CAUTION!

1. Installation and servicing must be made in compliance with all local safety codes including Occupational Safety and Health Act (OSHA). All wiring and electrical connections must comply with the National Electrical Code (NEC) and local electrical codes in effect.
2. To prevent an electrical hazard, disconnect power source before working on equipment. If the power disconnect is out of sight, lock the disconnect in the off position and tag it to prevent accidental application of power.
3. Make sure voltage rating of the switch corresponds to the voltage rating shown on the nameplate of the brake.
4. Installation and servicing should be performed only by qualified personnel familiar with the construction and operation of this equipment.

WARNING!

This switch is designed for use with a full wave rectifier only, DO NOT USE THIS SWITCH WITH A HALF WAVE RECTIFIER.

Applications

The Stearns electronic proving switch has been designed to detect and analyze the brake or clutch coil current waveform "signature" and thereby determine the operational status of the power transmission device. This operational status signal is delivered via a single pole, double throw relay contact. The status signal can be utilized in a wide variety of control and warning functions, as described in diagrams A and B .
A. simple brake wear indicator

LOGIC: If, within one second after application of power to the motor and brake, the proving switch N.C. contact does not open, the brake has not released, or has not released in an appropriate manner. The brake wear indicator lamp will illuminate, alerting the user that brake wear is excessive and service is required.
B. brake release detector WITH SYSTEM SHUTDOWN

LOGIC: If, within one second after application of power to the motor and brake, the proving switch N.C. contact does not open, the brake has not released, or has not released in an appropriate manner. Interrupt relay "l" is energized and latched, disabling motor starter "M" and brake relay "B". An indicator lamp may be wired in parallel with the interrupt relay coil, indicating "Brake not Released". Adjust/repair brake, depress "Reset" push-button, depress "Start" button, system resumes operation. Control voltage may simply be interrupted to eliminate "Reset" function, if desired. Proving switch contact must be utilized to interrupt both motor starter and brake relay !!! If only motor starter is interrupted, load may be free to fall !!!

Rexnord Industries, LLC
Stearns Division
5150 S. International Dr.
Cudahy, Wisconsin 53110
(414) 272-1100 Fax: (414) 277-4364 www.stearns.rexnord.com

SAB Motor Frame Adapter Dimensions

Selection

To select an adapter for a specific brake, refer to the Motor Frame Adapter Tables as shown in the brake series sections of this Catalog. After selecting the adapter stock number, refer to the Tables below for dimensions.
All adapters are constructed with an opening for internal lead wire connection, corresponding to the NEMA standard location for the motor frame size.
Screws for mounting adapter to motor must be provided by customer. Socket head cap screws are supplied for mounting brake to adapter.

Dimensions for estimating only. For installation purposes, request certified prints.

Brake Series	Torque (lb-ft)	Adapter Stock Number	Dimensions in Inches (Dimensions in Millimeters)											Add'I Shaft	List	Discount
			A	AH	AJ	AK	AL	B	BF	BK Hole	D	F	L	Req'd		
56,000	1.5-6	5-55-5041-00	$\begin{array}{\|c\|} 1.25 \\ (31.75) \end{array}$													
65,300*		5-55-5046-00		5.88	7.25	$\frac{8.500}{8.502}$	4.500	9.00	50		4.00	19	. 12	94		
$56,000$ and $56,800^{*}$	10-25	5-55-5043-00		(149.22)	(184.15)	$\frac{(215.900)}{(215.951)}$	$\frac{(114.325)}{(114.275)}$	(228.60)	(12.70)		(101.60)	(4.76)	(3.18)	(23.88)	\$700	B4
87,000 and 87,800*	6-105	5-55-7046-00	$\begin{gathered} 1.06 \\ (26.99) \end{gathered}$	$\begin{gathered} 7.25 \\ (184.15) \end{gathered}$	$\begin{array}{\|c\|} 11.00 \\ (279.40) \end{array}$	$\begin{gathered} \frac{12.501}{12.504} \\ (317.525) \end{gathered}$	$\begin{gathered} \frac{8.499}{8.497} \\ (215.875) \\ \hline \end{gathered}$	$\begin{gathered} 13.00 \\ (330.20) \end{gathered}$	$\begin{gathered} .62 \\ (15.88) \end{gathered}$	1/2-13 through	$\begin{array}{\|c\|} \hline 4.12 \\ (104.78) \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{gathered} .38 \\ (9.52) \end{gathered}$	$\begin{gathered} .87 \\ (22.10) \end{gathered}$	\$875	B2
87,300		5-55-7054-00				(317.602)	(215.849)									
$\begin{gathered} 87,000 \\ \text { and } \\ 87,800^{*} \\ \hline \end{gathered}$	6-105	5-55-7055-00	$\begin{gathered} 1.00 \\ (25.40) \end{gathered}$		$\begin{gathered} 9.00 \\ (228.60) \end{gathered}$	$\begin{gathered} \frac{10.500}{10.502} \\ (266.700) \\ \hline \end{gathered}$	$\begin{gathered} \frac{8.499}{8.497} \\ (215.875) \\ \hline \end{gathered}$	$\begin{gathered} 11.00 \\ (279.40) \end{gathered}$	**		$\begin{array}{\|c\|} \hline 6.25 \\ (158.75) \end{array}$		$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{gathered} .81 \\ (20.57) \end{gathered}$	\$450	B2
87,300*		5-55-7045-00				(266.751)	(215.849)									
$\begin{gathered} 87,000, \\ 87,800^{*} \\ \text { and } \\ 87,300^{*} \end{gathered}$	6-105	5-55-7043-00	$\begin{gathered} .75 \\ (19.05) \end{gathered}$	$\begin{array}{\|c\|} \hline 7.25 \\ (184.15) \end{array}$	$\begin{array}{c\|} 5.88 \\ (149.35) \end{array}$	$\frac{4.502}{4.507}$ $\frac{(114.35)}{(114.48)}$	$\frac{8.499}{8.497}$ (215.875) (215.849)	$\begin{gathered} 8.75 \\ (222.25) \end{gathered}$	$\begin{array}{\|c\|} \hline .62 \\ (15.75) \end{array}$	1/2-13 through	$\left\lvert\, \begin{array}{c\|} 4.00 \\ (101.60) \end{array}\right.$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{array}{\|c} .56 \\ (14.23) \end{array}$	\$1,300	B2
81,000	$\begin{gathered} 125- \\ 130 \end{gathered}$	5-55-2045-00	$\begin{array}{\|c\|} 1.06 \\ (26.99) \end{array}$	$\begin{array}{\|c\|} 11.00 \\ (279.40) \end{array}$	$\begin{gathered} 14.00 \\ (355.60) \end{gathered}$	$\begin{gathered} \frac{16.002}{16.005} \\ \frac{(406.451)}{(406.527)} \end{gathered}$	$\begin{array}{\|c\|} \hline \frac{12.499}{12.496} \\ \frac{(317.475)}{(317.398)} \\ \hline \end{array}$	$\begin{gathered} 16.50 \\ (419.10) \end{gathered}$	$\begin{gathered} .62 \\ (15.88) \end{gathered}$	5/8-11 through	$\begin{array}{c\|} 9.75 \\ (247.65) \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{array}{\|c} .87 \\ (22.10) \end{array}$	\$1,875	C1
81,000	$\begin{gathered} 125- \\ 230 \end{gathered}$	5-55-2041-00	$\begin{array}{c\|} 1.12 \\ (28.58) \end{array}$	$\begin{gathered} 11.00 \\ (279.40) \end{gathered}$	$\begin{array}{\|c\|} \hline 7.25 \\ (184.15) \end{array}$	$\begin{gathered} \frac{8.500}{8.502} \\ \frac{(215.900)}{(215.951)} \\ \hline \end{gathered}$	$\begin{gathered} \frac{12.499}{12.496} \\ \frac{(317.475)}{(317.398)} \end{gathered}$	$\begin{gathered} \frac{12.499}{12.496} \\ \frac{(317.475)}{(317.398)} \end{gathered}$	$\begin{array}{\|c\|} \hline .50 \\ (12.70) \end{array}$	5/8-11 through	$\begin{gathered} 6.00 \\ (152.40) \end{gathered}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	---	$\begin{gathered} .93 \\ (23.62) \end{gathered}$	\$1,325	C1
81,000		5-55-2043-00			$\begin{gathered} 9.00 \\ (228.60) \end{gathered}$	$\begin{array}{\|c} \frac{10.500}{10.502} \\ \frac{(266.700)}{(266.751)} \end{array}$					$\left\lvert\, \begin{gathered} 7.75 \\ (196.85) \end{gathered}\right.$			$\begin{gathered} .93 \\ (23.62) \end{gathered}$		C1
$\begin{gathered} 82,000 \\ \text { and } \\ 82,300^{*} \end{gathered}$	$\begin{gathered} 125- \\ 550 \end{gathered}$	5-55-2046-00	$\begin{gathered} 1.94 \\ (49.21) \end{gathered}$	$\begin{gathered} 11.00 \\ (279.40) \end{gathered}$	$\begin{gathered} 14.00 \\ (355.60) \end{gathered}$	$\begin{array}{\|c} \hline \frac{16.002}{16.005} \\ \frac{(406.451)}{(406.527)} \end{array}$	$\begin{gathered} \frac{12.499}{12.496} \\ \frac{(317.475)}{(317.398)} \end{gathered}$	$\begin{gathered} 16.50 \\ (419.10) \end{gathered}$	$\begin{gathered} .62 \\ (15.88) \end{gathered}$	5/8-11 $\times 1$ deep	$\begin{array}{c\|} 9.50 \\ (241.30) \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{array}{\|c\|} 1.75 \\ (44.45) \end{array}$	\$1,875	C1
$\begin{gathered} 82,000 \\ \text { and } \\ 82,300^{*} \end{gathered}$		5-55-2042-00	$\begin{array}{c\|} 1.38 \\ (34.92) \end{array}$		$\begin{array}{\|c\|} \hline 7.25 \\ (184.15) \end{array}$	$\begin{array}{\|c} \hline \frac{8.500}{8.502} \\ (215.900) \\ \hline(215.951) \\ \hline \end{array}$		$\begin{gathered} 13.25 \\ (336.55) \end{gathered}$	$\begin{gathered} .50 \\ (12.70) \end{gathered}$	5/8-11 through	$\begin{gathered} 6.00 \\ (152.40) \end{gathered}$			$\begin{gathered} 1.19 \\ (30.23) \end{gathered}$	\$1,325	C1
82,000 and 82,300*		5-55-2044	$\begin{array}{c\|} 1.38 \\ (34.92) \end{array}$		$\begin{gathered} 9.00 \\ (228.60) \end{gathered}$	$\begin{array}{\|c\|} \hline \frac{10.500}{10.502} \\ \frac{(266.700)}{(266.751)} \\ \hline \end{array}$		$\begin{gathered} 13.25 \\ (336.55) \end{gathered}$			$\left\lvert\, \begin{gathered} 7.75 \\ (196.85) \end{gathered}\right.$			$\begin{array}{c\|} 1.19 \\ (30.23) \end{array}$	\$2,075	C1
86,000	$\begin{aligned} & 500- \\ & 1000 \end{aligned}$	5-55-6041-00	$\begin{array}{c\|} 1.56 \\ (38.69) \end{array}$	$\begin{array}{\|c\|} 14.00 \\ (355.60) \end{array}$	$\begin{array}{\|c\|} \hline 11.00 \\ (379.40) \end{array}$	$\begin{array}{\|c} \frac{12.500}{12.504} \\ \frac{(317.500)}{(317.602)} \end{array}$	$\begin{array}{\|c\|} \hline \frac{16.000}{15.995} \\ \frac{(406.400)}{(406.273)} \\ \hline \end{array}$	$\begin{gathered} 16.19 \\ (441.16) \end{gathered}$	$\begin{gathered} .62 \\ (15.88) \end{gathered}$	5/8-11 x 3/4 deep	$\begin{array}{\|c\|} \hline 8.62 \\ (219.08) \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{array}{c\|c} 1.37 \\ (34.80) \end{array}$	\$2,800	C1

* 1/2-13 flat head screws are supplied with adapter.
** When adding an adapter to a hazardous location brake, refer to the "mounting requirements" on the product page for the recommended brake series for accommodating adapters.

Accessory End

FC face mounting for accessories, including brakes, on the end opposite the drive end of motor.
Some motor accessory end C-face may differ from the drive end. Confirm shaft diameter and bolt circle before ordering.

143TFC to 184TFC Frames, Inclusive

213TFC to 326 TFC Frames, Inclusive

Dimensions (Inches)

Frame Designation	FAJ	FAK	FBD Max.	FBF Hole			Hole for Accessory Leads	
				Number	Tap Size	Bolt Penetration Allowance		
							DP	Diameter
143TFC and 145TFC	5.875	4.500	6.50	4	3/8-16	0.56	2.81	0.41
182TFC and 184TFC	5.875	4.500	6.50	4	3/8-16	0.56	2.81	0.41
213TFC and 215TFC	7.250	8.500	9.00	4	1/2-13	0.75	3.81	0.62
254TFC and 256TFC	7.250	8.500	10.00	4	1/2-13	0.75	3.81	0.62
284TFC and 286TFC	9.000	10.500	11.25	4	1/2-13	0.75	4.50	0.62
324TFC and 326TFC	11.000	12.500	14.00	4	5/8-11	0.94	5.25	0.62

NOTE: Standards have not been developed for the shaft extenison diameter and length, and keyseat dimensions.

Tolerances* (Inches)

FAK Dimension, Face Runout, Permissible Eccentricity of Mounting Rabbet

FAK Dimension	Tolerance on FAK Dimension		Maximum Face Runout	Maximum Permissible Eccentricity of Mounting Rabbet
	Plus	Minus		0.004
Less than 12	0.000	0.003	0.004	0.007

* Tolerance requirement on $56, \mathrm{X} 00$ and 87,000 Series Brake kits is .015 T.I.R. (total indicated runout shaft to motor register face).

Stearns Recommended Minimum Shaft Diameter by Torque

Minimum recommended shaft size considers a keyed C1045 steel shaft under dynamic use in a typical spring set brake application.
$\left.\begin{array}{|c|c|}\hline \begin{array}{c}\text { Torque } \\ \text { ft-lb }\end{array} & \begin{array}{c}\text { Minimum } \\ \text { Shaft } \\ \text { (inches) }\end{array} \\ \hline 0.50 & 0.250 \\ \hline 0.75 & 0.250 \\ \hline 1.5 & 0.375 \\ \hline 3 & 0.500 \\ \hline 6 & 0.500 \\ \hline 10 & 0.625 \\ \hline 15 & 0.750 \\ \hline 25 & 0.875 \\ \hline 35 & 1.000 \\ \hline 50 & 1.125 \\ \hline\end{array} \quad \begin{array}{|c|c|c|}\hline \\ \hline\end{array} \quad \begin{array}{c}\text { Torque } \\ \text { ft-lb }\end{array} \quad \begin{array}{c}\text { Minimum } \\ \text { Shaft } \\ \text { (inches) }\end{array}\right\}$

Torque $\mathbf{N m}$	Minimum Shaft $(\mathbf{m m})$
4 Nm	$\varnothing 10 \mathrm{~mm}$
8 Nm	$\varnothing 13 \mathrm{~mm}$
16 Nm	$\varnothing 16 \mathrm{~mm}$
32 Nm	$\varnothing 20 \mathrm{~mm}$
60 Nm	$\varnothing 25 \mathrm{~mm}$
80 Nm	$\varnothing 28 \mathrm{~mm}$
150 Nm	$\varnothing 34 \mathrm{~mm}$
240 Nm	$\varnothing 39 \mathrm{~mm}$
400 Nm	$\varnothing 47 \mathrm{~mm}$

[^0]: * Exceeds maximum speed rating.

[^1]: *Standard U.S. keyseats made to ANSI B17.1 standard.
 Metric keyseats to DIN 6885/1 p9.

[^2]: *The over-excitation rectifier produces a momentary fullwave output before switching to a halfwave output.

[^3]: Standard voltages listed. For other voltages, contact factory

[^4]: *Standard voltages listed. For other voltages, contact factory.

