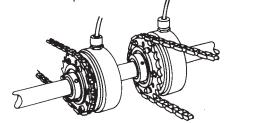
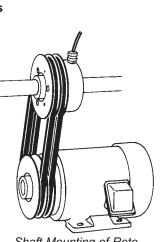

Shaft-Mounted Clutches Product Overview


CCC Clutch Coupling

The compact CCC Clutch-Coupling offers a high torqueto-size ratio meeting a broad range of applications. Available in five sizes. CCC Clutch-Couplings can be used in almost any coupling application where on-off control of rotary motion is required. Available for 90-100, 24-28, or 12 Vdc operation.

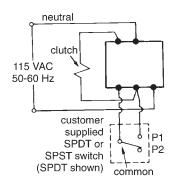

CRS Roto-Sprocket Clutch

An ideal solution for almost any parallel shaft drive application, this unit has been proven in thousands of applications. This one-piece, pre-aligned unit has a special adapter hub that accepts a plate-type sprocket. Installation and maintenance are quick and convenient. Available in four sizes, from 100 lb-in through 1740 lb-in nominal static torque.

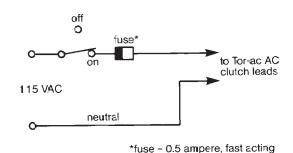
CRP Roto Sheave Clutches

The performance, quality, and life of this unit have been proven in thousands of applications. This one-piece, pre-aligned unit has an integral sheave for quick, convenient installation and maintenance. Available in four sizes from 100 lb-in to 1740 lb-in with a variety of standard sheaves. An ideal solution for almost any parallel shaft drive application. Available for 90-100, 24-28, or 12 Vdc operation.

Shaft Mounting of Roto Sheave Clutch (CRP)


CTS Through-Shaft Clutch

The compact CTS Clutch offers a high torque-to-size ratio in an economical unit that meets a broad range of applications. Available in three sizes. Extended thrushaft driven hub is adaptable for mounting pulleys, gears, or sprockets. CTS Clutches can be used in almost any parallel shaft application where on-off control of rotary motion is

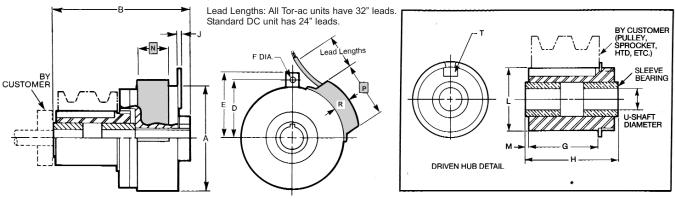

required. Available for 90-100, 24-28, or 12 Vdc operation.

Stearns Shaft-mounted clutches can be ordered as a standard dc unit, with the option of a separate rectifier (see page 47 for information on rectifier packages), or as a Tor-ac unit which has a built-in rectifier.

Wiring of standard dc unit with optional ac rectifier

Wiring of Tor-ac unit with built-in rectifier

CTS Clutch – Thru Shaft


- CSA certified.
- Ball-bearing mounted stationary field for long trouble-free operation.
- Sleeve bearing in driven hub supports customer-supplied pulley, gear, or sprocket.
- Spline drive for long life under heavy loads.
- Available with spring release.
- · Zinc plated magnet body for corrosion resistance.
- Epoxy encapsulated coil construction for uniform heat transfer and moisture resistance.
- · Class H magnet wire and potting material.

Refer to Installation and Service Instructions Sheet 8-078-862-00.

Dimensional Data (In Inches)

Size	Α	В	D	Е	F	G	Н	J	L	М	Ν	Р	R	Т	U (through bore)
3	2.67	3.32	1.56	1.75	.13	1.44	1.93	.06	<u>1.374</u> 1.375	.06	-	-	-	5/16 x 5/32	3/8, 1/2
3.5	3.19	3.39	1.81	2.00	.19	1.50	1.95	.06	$\frac{1.374}{1.375}$.06	1.00	2.74	.80	5/16 x 5/32	3/8, 1/2, 5/8
5	4.31	3.91	2.50	2.84	.19	1.50	2.14	.09	$\frac{1.374}{1.375}$.06	1.00	2.81	.69	5/16 x 5/32	1/2, 5/8, 3/4,

IMPORTANT NOTE: Information and dimensioning relating to Tor-ac units shown in shaded area.

Dimensions are for estimating only and subject to change without notice. For installation purposes, request certified prints.

Performance/List Price Data

			Basic	Nominal	Nominal		Ine	rtia	Thermal	Approx.	Max	List
Catalog Number	Size	Туре	Model Number	Static Torque (Ib-in)	Dynamic Torque at 1800 RPM (Ib-in)	orque at 1800 RPM 2 D		Drive Side (lb-ft²)	Capacity (ft-lb/min)①	Weight (Ibs)	Power (watts)	Brice ③
CTS-30	3	standard	2-11-2502-05	60	40	7000	2.4 x 10 ⁻³	1.67 x 10 ⁻³	1650	2.5	9	\$952.00
CTS-30S	5	spring rel.	2-11-2502-09	00	60 40	1000	2.4 × 10	1.07 × 10	1000	2.5	9	φ9 <u>3</u> 2.00
CTS-35	3.5	standard	2-11-3141-06	100	65	5000	4.7 x 10 ⁻³	2.96 x 10 ⁻³	2750	3.5	11	1200.00
CTS-35S	5.5	spring rel.	2-11-3141-07	100	05	5000	4.7 × 10	2.00 × 10	2100	0.0		1200.00
CTS-35T	3.5	standard	2-11-3190-00	100	65	5000	4.7 x 10 ⁻³	2.96 x 10 ⁻³	2750	3.5	11	1384.00
CTS-35ST	5.5	spring rel.	2-11-3190-01	1 100	05	5000	4.7 × 10	2.90 x 10	2750	5.5		1384.00
CTS-50	5	standard	2-11-4267-00	275	160	5000	5.7 x 10-3	1.47 x 10 ⁻²	4400	5.4	14	1368.00
CTS-50S	5	spring rel.	2-11-4267-01	275	160	5000	5.7 X 10*	1.47 X 10 ⁻	4400	5.4	14	1300.00
CTS-50T	5	standard	2-11-4290-00	275	160	5000	5.7 x 10-3	1.47 x 10 ⁻²	4400	5.4	14	1552.00
CTS-50ST	5	spring rel.	2-11-4290-01	2/5	100	5000	J.7 X 10*	1.47 X 10 ⁻	4400	5.4	14	1552.00

OThermal capacity rating is based on ambient temperature of 70°F at 1750 RPM.

@RPM value stated is for ball bearing mount magnet body. See ASTM B 438 for further information on copper based sleeve bearings used in the driven hubs.

Ordering Information

Example of a complete part number: 2-11-2502-05-H J G- 3/8 bore 90-100 Vdc

3 List prices subject to change without notice.

Character	Voltage
C E J	12 Vdc 24-28 Vdc 90-100 Vdc
N*	115 Vac *

*Includes rectifier. Not available on size 3.

*Special or metric bores available, consult factory.

Tor-ac Clutch

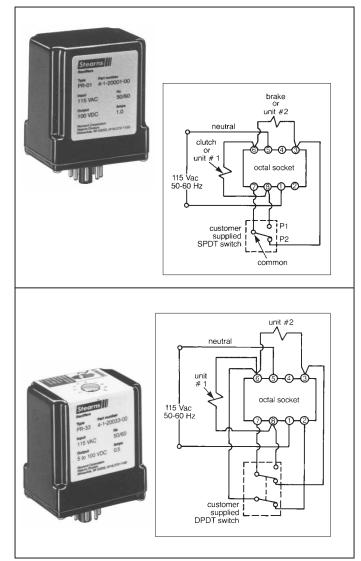
DC Clutch

Standard

For Convenience, Safety and Energy Savings, Look to Stearns[®] Rectifier Controls.

Perfectly matched to Stearns DC actuated clutches, brakes or combination units, Stearns rectifier controls offer solid-state reliability that also takes into account important human use factors, making them easy to utilize and maintain.

Stearns rectifier controls are available in fixed or adjustable output models with compact housings to simplify installation.


For ultimate convenience, all wiring connections are readily

accessible. The PR Series even goes one step further, offering the ease of modular plug-in designs connecting directly to octal sockets.

For safety, all models offered are fused to provide protection against overload and feature an arc suppression circuit, minimizing arcing and extending contact life. In the PR Series, the internal fuse can be changed only by removing the rectifier from its socket - eliminating a potential shock hazard. For energy savings, efficiency is built into Stearns rectifiers. The adjustable voltage output on the PR-33, for example, uses thyristor control for a low 4-watt power loss-87% less than some competitive units.

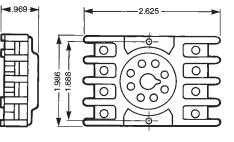
When you need reliable performance and more, look to Stearns rectifier controls.

Performance/List Price Data

Rectifier	AC	Nominal DC Output			Control	Circuits	Switching	List	Discount
Part Number	Input Voltage	Volts	Max. Amp①	Max. Watts	#1	#2	Relay	Price ②	Symbol
PR-01 4-1-20001-00	115 50-60 Hz	100	1.0	100	Fixed	Fixed	No	\$266.00	X-1
PR-33 4-1-20033-00	115 50-60 Hz	15-100	0.5	50	Fixed	Variable	No	642.00	X-1

D Based on ambient temperature of 104°F.
②List prices subject to change without notice.

Octal Socket(s)


Supplied with terminal screws and clips

List Price Data

Octal Socket Part Number	List Price	Discount Symbol
9-61-0153-00	\$128.00	X-1
9-61-0153-01	48.00	X-1

Part Number: 9-61-0153-00 Dimensions

Part Number Dime

Model PR-33

Model PR-01

at a time.

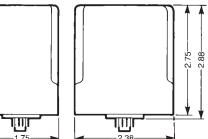
Two fixed 100 volt outputs.

mounting and wiring connection.

· Internally fused for overload protection.

One fixed 100 volt output and one adjustable 15-100 volt output to allow reduced torque starts or stops for "soft" cushioned engagement.

• Adjustable control on top of housing for easy accessibility.

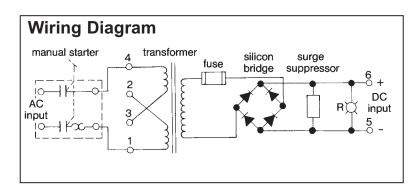

Rectifier Controls

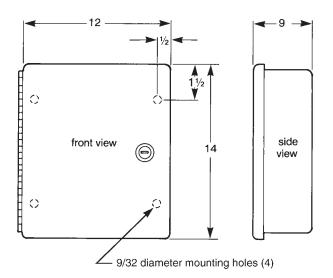
Modular plug-in design uses octal socket for easy

• Operates one clutch or one brake, or both, one on

- Modular plug-in design uses octal socket for each mounting and wiring connection.
- Internally fused for overload protection.
- Operates one clutch or one brake, or both, one on at a time.

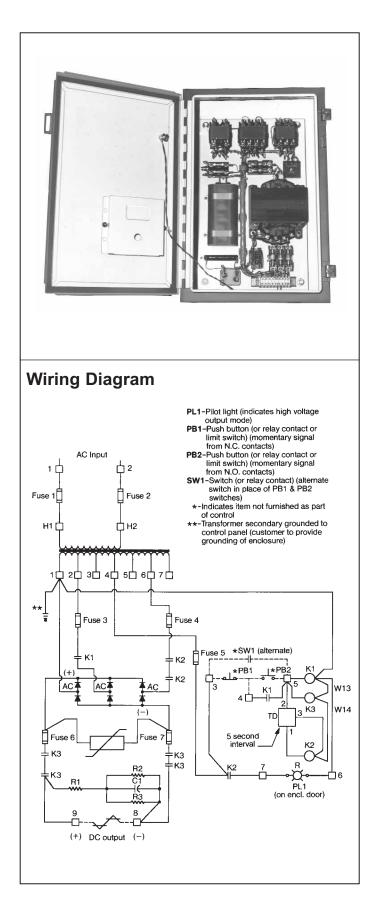
Enclosure dimensions apply to both PR-01 and PR-33.


Part Number: 9-61-0153-01 Dimensions


Rectifier Controls

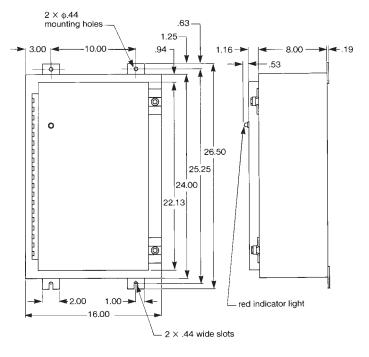
Series 12000 Silicon Rectifiers

Heavy duty single-phase rectifier for use with Stearns heavy duty clutches and brakes. Incorporates a solid-state silicon bridge circuit for high efficiency and excellent voltage regulation. Available with outputs of 115 or 230 Vdc; power ratings of up to 1150 watts. A transformer provides isolation and dual AC input capability... 115/230 or 230/460 Vac. Each rectifier is housed in a NEMA 1 steel cabinet and includes a separately housed manual starter with overload heaters.


Dimensional Data

Performance Data

Stock Number		nput 0 Hz Phase)	DC Output			
	Volts	Amps	Volts	Amps ^①	Watts	
4-1-12102-00	115/230	2.5/1.3	115	2.0	230	
4-1-12104-00	115/230	6.4/3.2	115	5.0	575	
4-1-12202-00	230/460	1.3/0.7	115	2.0	230	
4-1-12205-00	230/460	3.2/1.6	115	5.0	575	
4-1-12302-00	115/230	5.2/2.6	230	2.0	460	
4-1-12305-00	115/230	13.0/6.5	230	5.0	1150	
4-1-12402-00	230/460	2.6/1.3	230	2.0	460	
4-1-12405-00	230/460	6.4/3.2	230	5.0	1150	


① Based on ambient temperature of 104°F.

Forcing Circuits

Combination forcing circuit and rectifier for use with Stearns SCE spring-set clutches and SCEB springset brakes. Suitable for use with all sizes from 800 through 1600. Provides the momentary forcing voltage necessary to release a clutch or brake. Units are available for 115, 208, 230, 460 and 575 Vac, 50/60 Hz input. The output of each unit is a forcing voltage of 230 Vdc which, after a 5 second delay, drops to a holding voltage of 70 Vdc. Circuitry includes surge suppression network to protect coil and minimize contact arcing. Complete circuit is housed in a NEMA 12 enclosure.

Dimensional Data

Performance Data

Stock	AC Input		DC Input					
Number	Voltage 50/60 Hz			Watts	Shipping Wt. (lbs.)			
4-3-00115-12	115 Vac	230	70	1000	60			
4-3-00208-12	208 Vac	230	70	1000	60			
4-3-00230-12	230 Vac	230	70	1000	60			
4-3-00460-12	460 Vac	230	70	1000	60			
4-3-00575-12	575 Vac	230	70	1000	60			

Application Engineering Data

Basic Torque Formula:

$$T = \frac{hp \times 5,252}{N_{cb}} \times SF$$

Where:

T = Average dynamic torque, lb-fthp = Motor horsepowerSF = Service factor

N_{cb} = rpm of the clutch/ brake shaft

5,252 = Constant

Inertia:

$$I = W \times K^2$$

Where:

- W = Weight of the object
- K² = The square of the radius of gyration

Velocity, Linear:

 $V = \pi DN$

Where:

- $\pi = 3.142$
- D = Diameter of drive head pulley

N = rpm

Reflected Inertia - Linear:

$$Wk_{L}^{2} = W\left(\frac{V}{2\pi N_{cb}}\right)^{2}$$

Where

- W = The weight of the component, lb
- V = The velocity of the component in feet per minute
- N_{cb} = The rpm of the clutch/ brake shaft

Reflected Inertia - Rotational:

$$Wk_r^2 = Wk_C^2 \times \Big(\,\frac{N}{N_{cb}}\Big)^2$$

Where:

- Wk_r^2 = Inertia reflected to the clutch or brake
- Wk_C² = Inertia of the component
 - N = rpm of the component
- N_{cb} = rpm of the clutch or brake shaft

Dynamic Torque:

$$T_{d} = \frac{Wk^2 \times N}{308 \times t}$$

- Where:
 - T_d = Dynamic torque, lb-ft
- Wk² = Total inertia seen by the clutch/brake (including the clutch/ brake inertia and motor inertia if applicable), lb-ft²
 - N = rpm of the clutch/brake
 - t = Stopping time in seconds (or starting time)
- 308 = Constant

Thermal Capacity:

$$\mathsf{E} = 1.7 \times \mathsf{W}\mathsf{R}^2 \left(\frac{\mathsf{N}}{100}\right)^2 \times \mathsf{F}$$

Where:

- E = Energy (heat) which needs to be dissipated, (ft-lb/min) for the application requirement
- WR² = Total reflected inertia at clutch/brake shaft location. This should include clutch/brake inertia. (lb-ft²)
 - N = Speed differential in revolutions per minute (rpm) at the clutch/brake shaft.
 - F = Number of cycles per minute (cycle rate).

Ohms Law:

Ohms = Volts/Amperes

$$\left(\mathsf{R}=\frac{\mathsf{E}}{\mathsf{I}}\right)$$

Amperes = Volts/Ohms

$$\left(I = \frac{E}{R}\right)$$

 $\begin{array}{l} \text{Volts} = \text{Amperes} \times \text{Ohms} \\ (\text{E} = \text{IR}) \end{array}$

Power - DC Circuits:

Watts = Volts × Amperes (W = EI)

Amperes =
$$\frac{Watts}{Volts} \left(I = \frac{W}{E} \right)$$

Inertia Table

Wk² of Steel Shafting or Disc per Inch of Length

Dia. (inch)	Wk² (Ib-ft²)	Dia. (inch)	Wk² (lb-ft²)	Dia. (inch)	Wk ² (lb-ft ²)	Dia. (inch)	Wk ² (lb-ft ²)	Dia. (inch)	Wk² (lb-ft²)
1/8	4.53 ξ 10 ⁻⁸	4	.0491	9 ³ / ₄	1.735	25	75.00	48	1019.2
1/4	7.47 ξ 10 ⁻⁷	4 ¹ / ₄	.0626	10	1.920	26	87.74	49	1106.8
3/ ₈	3.83 ξ [°] 10⁻⁰	4 ¹ / ₂	.0787	10 ¹ / ₂	2.334	27	102.0	50	1200.0
1/2	1.21 ξ̃ 10⁻⁵	4 ³ / ₄	.0977	11	2.811	28	118.0	51	1298.9
5/8	2.93 ξ 10-⁵	5	.1200	11 ¹ / ₂	3.358	29	135.8	52	1403.8
3/4	6.07 ξ 10-⁵	5 ¹ /4	.1458	12	3.981	30	155.5	53	1514.9
7/8	.0001	51/2	.1757	12 ¹ / ₂	4.687	31	177.3	54	1632.5
1	.0002	5 ³ / ₄	.2099	13	5.484	32	201.3	55	1756.9
1 1/8	.0003	6	.2488	13 ¹ / ₂	6.377	33	227.7	56	1888.2
1 1/4	.0005	6 ¹ /4	.2930	14	7.376	34	256.6	57	2026.7
1 ³ /8	.0007	61/2	.3427	14 ¹ / ₂	8.487	35	288.1	58	2172.7
1 1/2	.0010	6 ³ /4	.3986	15	9.720	36	322.5	59	2326.5
1 ⁵ /8	.0013	7	.4610	15 ¹ /2	11.08	37	359.8	60	2488.3
1 ³ / ₄	.0018	71/4	.5304	16	12.58	38	400.3	66	3643.1
17/8	.0024	71/2	.6075	16 ¹ / ₂	14.23	39	444.2	72	5159.6
2	.0031	7 ³ / ₄	.6926	17	16.04	40	491.5	78	7166.7
2 ¹ / ₄	.005	8	.7864	18	20.15	41	542.5	84	9558.9
2 ¹ / ₂	.0075	81/4	.8894	19	25.02	42	597.4	90	12597
2 ³ / ₄	.0110	8 ¹ / ₂	1.002	20	30.72	43	656.4	96	16307
3	.0156	8 ³ / ₄	1.125	21	37.34	44	719.6	102	20782
31/4	.0214	9	1.260	22	44.98	45	787.3		
3 ¹ / ₂	.0288	91/4	1.405	23	53.73	46	859.6		
3 ³ / ₄	.0380	9 ¹ / ₂	1.564	24	63.70	47	936.9		

To determine Wk² of a given shaft length or disc shape thickness, multiply the table value given above by the length, or thickness, in inches.

Material Factors

Multiply the inertia of the	he steel diameter by the selected material.
Bronze 1.1	Nylon .18
Aluminum .35	Cast iron .92

Radius of Gyration, Squared

r		it Its Own Axis -x	r ₁
-x	Solid	Hollow	
X-E	$K^2 = 1/_2 r^2$	$K^2 = 1/2 (r_1^2 + r_2^2)$	x- r ₂
C C	Axis throu x-	igh Center -x	
	Prism	Cylinder	xx
x-y	$x^2 = \frac{1}{12} (b^2 + c^2)$	$K^2 = \frac{L^2 + 3r^2}{12}$	
C C		One End -x	
	Prism	Cylinder	
	$x^2 = 1/_{12} (4b^2 + c^2)$	$K^{2} = \frac{4L^{2} + 3r^{2}}{12}$	xx

English-Metric Conversion Factors

Measurement	Base Unit	Factor	Conversion
Length	inch, in <i>millimeter, mm</i>	25.4 .03937	<i>millimeter, mm</i> inch, in
Torque	pound-inch, Ib-in	.112985	newton-meter, Nm
	newton-meter, Nm	8.8507	pound-inch, Ib-in
	pound-feet, Ib-ft	1.355818	newton-meter, Nm
	newton-meter, Nm	.73756	pound-feet, Ib-ft
	ounce-inch, oz-in	.007062	newton-meter, Nm
	newton-meter, Nm	141.612	ounce-inch, oz-in
Moment of Inertia	pound-feet squared, lb-ft ² kilogram-meter squared, kgm ²	.042 23.81	<i>kilogram-meter squared, kgm</i> ² pound-feet squared, lb-ft ²
Kinetic energy	foot-pound, ft-lb	1.355818	<i>joule, J</i>
	joule, J	.73756	foot-pound, ft-lb
Weight	pound, lb	.453592	<i>kilogram, kg</i>
	<i>kilogram, kg</i>	2.20462	pound, lb
Horsepower (English)	horsepower, hp	.7457	<i>kilowatt, kW</i>
	kilowatt, Kw	1.341	horsepower, hp
- 1	horsepower-seconds per minute, hp-sec/min	12.42833	watts, W
Thermal capacity	watts, W	.08046	horsepower-seconds per minute hp-sec/min
Temperature	degrees Fahrenheit, °F	(°F - 32) × 5/9	<i>degrees Celcius,</i> °C
	degrees Celcius, °C	(°C × 9/5) + 32	degrees Fahrenheit, °F

Multiply the base unit by the factor shown to obtain the desired conversion

Conversion Factors for Thermal Capacity

Base Unit	Multiply by	To Obtain
horsepower	33,000	ft-lb/min
hp-sec/min	550	ft-lb/min
BTU/min	777.385	ft-lb/min
watts	44.254	ft-lb/min

Metric Bore and Keyways

Bore (millimeter) + .25 mm 000 mm	Keyway (millimeter) Nominal
6	2ξ2 2ξ2
8	2ξ2
10	3 ξ 3
12	4ξ4
14	5ξ5
15	5ξ5
16	5ξ5
18	6ξ6
19	6ξ6
20	6ξ6
22	6ξ6
24	8ξ7
25	8ξ7
26	8ξ7
28	8ξ7
30	8ξ7

Contact factory for specific application information